用户名: 密码: 验证码:
δ相对GH4169合金强韧性的影响规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of δ Phase on Strength and Toughness of GH4169 Alloy
  • 作者:申佳林 ; 韦贤毅 ; 徐平伟 ; 梁益龙 ; 周烨 ; 梁宇
  • 英文作者:Shen Jialin;Wei Xianyi;Xu Pingwei;Liang Yilong;Zhou Ye;Liang Yu;Guizhou University;The Key Laboratory for Mechanical Behavior and Microstructure of Materials;National&Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology;
  • 关键词:GH4169合金 ; δ相 ; 强韧性 ; 裂纹扩展
  • 英文关键词:GH4169 alloy;;δ phase;;strength and toughness;;crack propagation
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:贵州大学;贵州省材料结构与强度重点实验室;高性能金属结构材料与制造技术国家地方联合工程实验室;
  • 出版日期:2019-05-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.394
  • 基金:国家自然科学基金(51461007,51761003);; 贵州省自然科学基金([2015] 3012,[2014] 2003,[2014]6012)
  • 语种:中文;
  • 页:COSE201905016
  • 页数:9
  • CN:05
  • ISSN:61-1154/TG
  • 分类号:111-119
摘要
通过断裂韧度J_(0.2BL)以及冲击韧性测试研究了δ相含量对GH4169合金韧性的影响。结果表明,固溶温度从940℃增加到980℃,δ相含量从1.54%降低到0.045%,晶粒尺寸从12.59μm长大到35.21μm,δ相含量对拉伸强度无显著影响,但断裂韧度J_(0.2BL)从112 kJ/m~2增加到355 kJ/m~2,冲击韧性从35 J增加到75 J。δ相的析出会导致其周边出现无γ''相析出区,当大量δ相沿晶界分布时,则沿晶界形成无强化相析出带,在应力作用下,δ相与无强化相析出区基体的应变差会导致界面开裂、形成孔洞。在无强化相析出区孔洞快速连接形成裂纹,裂纹沿晶扩展与空洞汇合,降低了裂纹扩展阻力,加速了裂纹的扩展。因此δ相的存在为裂纹提供了扩展通道,降低了材料的塑韧性。
        Influence of the δ phase on toughness of GH4169 alloy was investigated by fracture toughness J_(0.2 BL) and instrumented impact experiment. Results indicate that with the increase of solution temperature from 940 ℃ to 980 ℃, δ phase content decreases from 1.54% to 0.045%, and grain size grows up from 12.59 to 35.21 μm. δ phase content has no obvious effect on the strength of the material, but the fracture toughness J_(0.2 BL) increases from 112 kJ/m~2 to 355 kJ/m~2, and the impact toughness increases from 35 J to 75 J. δ phase is mainly distributed along the grain boundary, and there is no strengthening phase precipitation around it. The zone with no strengthening phase near the grain boundary will be formed, which promotes the crack propagation along the grain boundary. Moreover, the δ phase itself is the intermetallic compound. Under certain plastic deformation conditions, it is easy to separate from micro plastic zone and form a cavity. In the micro plastic zone, the cavities are rapidly interlinked to form a crack, and the crack grows along the grain boundary with the cavity, which reduces the crack propagation resistance and accelerates the crack propagation. Therefore, the presence of δ phase provides an extended channel for the crack and reduces the toughness of the material.
引文
[1]Yu Z S,Zhang J X,Yuan Y et al.Materials Science&Engineering A[J],2015,634:55
    [2]Lin Y C,Li K K,Li H B et al.Materials&Design[J],2015,74:108
    [3]Mei Y,Liu Y,Liu C et al.Journal of Alloys&Compounds[J],2015,649(3):949
    [4]Sun Haofang(孙昊昉),Tian Sugui(田素贵),Jin Ying(金莹).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2017,46(2):449
    [5]Wang Fei(王飞).Thesis for Master Degree(硕士论文)[D].Shanghai:Donghua University,2012:2
    [6]Zhuang Jingyun(庄景云),Du Jinhui(杜金辉),Deng Qun(邓群).Microstructure and Properties of the Wrought Superalloy GH4169(变形高温合金GH4169组织与性能)[M].Beijing:Metallurgical Industry Press,2011:1
    [7]Wang Yan(王岩),Shao Wenzhu(邵文柱),Zhen Liang(甄良).The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J],2011,21(2):341
    [8]Wui Xianping(魏先平),Zheng Wenjie(郑文杰),Song Zhigang(宋志刚)et al.Transactions of Materials and Heat Treatment(材料热处理学报)[J],2012,33(8):53
    [9]Zhang S H,Zhang H Y,Cheng M.Materials Science&Engineering A[J],2011,528(19):6253
    [10]Zhao Xinbao(赵新宝),Gu Yuefeng(谷月峰),Lu Jintao(鲁金涛)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2015,44(3):768
    [11]Du Jinhui(杜金辉),Lv Xudong(吕旭东),Deng Qun(邓群).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2014,43(8):1830
    [12]Azadian S,Wei L Y,Warren R.Materials Characterization[J],2004,53(1):7
    [13]Wui Xianping,Zheng Wenjie,Song Zhigang et al.Journal of Iron and Steel Research[J],2014,21(3):375
    [14]Lu X,Du J,Deng Q et al.Journal of Materials Research&Technology[J],2014,3(2):107
    [15]Deleume J,ClouéJ M,Andrieu E.Journal of Nuclear Materials[J],2008,382(1):70
    [16]Cai D,Zhang W,Nie P et al.Materials Characterization[J],2007,58(3):220
    [17]Zhang Haiyan(张海燕),Zhang Shihong(张士宏),Cheng Ming(程明).Acta Metallurgica Sinica(金属学报)[J],2009,45(12):1451
    [18]Curry D A.Nature[J],1978,276(5683):50
    [19]Ritchie R O,Knott J F,Rice J R.Journal of the Mechanics&Physics of Solids[J],1973,21(6):395
    [20]Shu Delin(束德林).Mechanical Properties of Engineering Materials(工程材料力学性能)[M].Beijing:China Machine Press,2007:80
    [21]Kong Yonghua(孔永华),Li Long(李龙),Chen Guosheng(陈国胜)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2010,39(S1):472
    [22]Editorial Board of China Superalloys Handbook(中国高温合金手册编委会).China Superalloys Handbook(中国高温合金手册上卷)[M].Beijing:Standards Press of China,2012:689
    [23]Li Hongying(李红英),Zhang Xiwang(张希旺),Ding Changwei(丁常伟).Journal of Materials Science and Engineering(材料科学与工程学报)[J],2008(4):599
    [24]Geng Ping(耿平),Zeng Meiguang(曾梅光),Qian Cunfu(钱存福)et al.Journal of Northeastern University(东北大学学报)[J],1997(5):99
    [25]GB/T21143[S].Metallic Materials-Unified Method of Test for Determination of Quasistatic Fracture Toughness《金属材料准静态断裂韧度的统一试验方法》.2007
    [26]Lambert-Perlade A,Sturel T,Gourgues A F et al.Metallurgical&Materials Transaction A[J],2004,35(13):1039
    [27]Diaz-Fuentes M,Iza-Mendia A,Gutierrez I.Metallurgical&Materials Transaction A[J],2003,34(11):2505
    [28]Zhao M C,Hanamura T,Qiu H et al.Materials Science and Engineering A[J],2005,395(1-2):327
    [29]Mcmeeking R M.Journal of Mechanics and Physics of Solids[J],1977,25(5):357
    [30]Liang Yu(梁宇),Xiang Song(向嵩),Liang Yilong(梁益龙)et al.Materials Review(材料导报)[J],2017,31(2):77
    [31]Sun Qian(孙茜),Wang Xiaonan(王晓南),Zhang Shunhu(章顺虎)et al.Acta Metallurgica Sinica(金属学报)[J],2013,49(12):1501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700