用户名: 密码: 验证码:
广西北山铅锌矿S、Pb同位素特征及地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The characteristics and geological significance of S and Pb isotopes in the Beishan Pb-Zn deposit,Guangxi
  • 作者:董海雨 ; 汪劲草 ; 余何 ; 汤静如 ; 李细光
  • 英文作者:DONG Hai-yu;WANG Jin-cao;YU He;TANG Jing-ru;LI Xi-guang;School of Earth Sciences,Guilin University of Technology;Engineering Research Center of Exploration for Hidden Non-Ferrous and Precious Metal Ore Deposits,Ministry of Education,Guilin University of Technology;Hezhou University;Earthquake Administration of the Guangxi Zhuang Autonomous Region;
  • 关键词:矿体形貌 ; 岩溶构造 ; S、Pb同位素 ; 矿床成因 ; 北山铅锌矿床
  • 英文关键词:ore body morphology;;karstification;;S、Pb isotopes;;genesis of ore deposits;;Beishan Pb-Zn deposit
  • 中文刊名:YSJS
  • 英文刊名:Mineral Exploration
  • 机构:桂林理工大学地球科学学院;桂林理工大学有色及贵金属隐伏矿床勘查教育部工程研究中心;贺州学院;广西壮族自治区地震局;
  • 出版日期:2019-03-28
  • 出版单位:矿产勘查
  • 年:2019
  • 期:v.10;No.63
  • 基金:广西自然科学基金项目(2016GXNSFAA380129);; 有色及贵金属隐伏矿床勘查教育部工程研究中心项目(2018GCZX002);; 广西科技计划项目(桂科AB17195022)联合资助
  • 语种:中文;
  • 页:YSJS201903020
  • 页数:12
  • CN:03
  • ISSN:11-5875/TD
  • 分类号:155-166
摘要
基于矿体分析,北山矿床存在两种矿体类型:岩溶型矿体和断裂型矿体。其中Ⅰ、Ⅱ号矿体是岩溶型矿体、Ⅲ号矿体是断裂构造型矿体。矿体形态以似层状、管状、囊状、脉状为主。矿石矿物简单,主要金属矿物是闪锌矿和方铅矿,围岩蚀变较弱。同位素研究表明,该矿床硫化物δ~(34)S值变化范围为-3.84‰~+4. 56‰,平均值-1. 30‰,集中于零值附近,变化大,暗示矿区硫可能主要来自于沉积地层的贡献。铅的同位素~(206)Pb/~(204)Pb=18.006~18.084,均值18.043,~(207)Pb/~(204)Pb=15.651~15.731,均值15.688,~(208)Pb/~(204)Pb=38. 258~38. 525,均值38. 437。通过Pb同位素对比,点均落在上地壳平均Pb演化曲线附近,显示成矿金属具有壳源特征,可能来自于基底。综合矿床学、岩石学、矿体形貌学、S和Pb同位素数据,认为北山铅锌矿属于密西西比河谷型(MVT)矿床。
        Based on the ore body analysis, there are two types of ore bodies in the Beishan deposit: karst-type ore bodies and fault-type ore bodies. The ore bodies No. I and No. II are karst type ore bodies; No. Ⅲ ore body is a fractured ore body. The ore body morphology is mainly stratified, cystic, and veinlike. Ore minerals are simple, sphalerite and galena are the main metal minerals, and the wall rock alterations are weak.This study shows that the sulfide δ~(34)S values of the deposit vary from -3.84‰ to +4.56‰,with an average of -1.2‰, which are mostly concentrated in the range of Sedimentary formation sulfur. The ~(206)Pb/~(204)Pb ratios range from 18,006 to 18.084( average 18.043),~(207)Pb/~(204)Pb from 15.651 to 15.731(average 15.688) and ~(208)Pb/~(204)Pb from 38.258 to 38.525(average38.437). By comparison with the Plumobtectonic mode of lead isotopes(Zartmanand Doe, 1981), all data fall near the growth curve of the mean upper crust lead, indicating that the Pb might have been sourced from crust sources, basement rocks was likely the most sources. It is considered that the Beishan lead-zinc deposit belongs to a MVT deposit through this study.
引文
Chinnasamy S S,Mishra B.2013.Greenstonemetamorphism,hydrothermal alteration, and gold mineralization in the genetic context of the granodiorite-hosted gold deposit at Jonnagiri, EasternDharwarCraton, India[J]. Economic geology, 108(5):1015-1036.
    Donoghue K A,Ripley E M and Li C S.2014. Sulfer isotope and mineralogical studies of Ni-Cu sulfide mineralization in the bovine igneous complex intrusion, Baraga, Northern Michigan[J]. Economic geology,109(2):325-341.
    Leach D L and Sangster D F.1993.Mississippi vallay-type lead-zinc deposits[J].Geological Association of Canada Special Paper, 40:89-314.
    Leach D L, Sangster D F, Kelley K D. 2005.Sediment-hosted leadZinc deposits:A global perspective[J]. Economic Geology, 100(3):561-607.
    Leach D,Macquar J C; Lagneau V.2006. Precipitation of lead-zinc ores in the Mississippi Valley-type deposit at Treves, Cevennes region of southern France[J]. Geofluids, 6:24-44
    Ohmoto H,Goldhaber M B. 1997.Sulfur and carbon isotopes[J].Geochemistry of hydrothermal ore deposits,3:517-611.
    Ohmoto H.1986.Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry, 16(1):491-559.
    Zartman R E,Doe B R.1981. Plumbotectonics-The model[J].Tectonophysics,75(1-2):135-162.
    Zhang J,Chen Y J,Yang Y, Deng J.2011. Lead isotope systematics ofthe Weishancheng AU-Ag belt, TongbaiMountains, central China:Implication for ore genesis[J].International Geology Review,53(5-6):656-676.
    陈好寿.1994.铅锌矿床同位素地球化学[M].北京:科学出版社.
    陈懋弘,黄庆文,李继贤,蒋柏昌,张长明.2010.广西乐业林旺金矿床构造解析及构造成矿作用[J].大地构造与成矿学,(3):349-3.
    韩发,孙海田.1999.Sedex型矿床成矿系统[J].地学前缘,(01):140-163.
    胡瑞忠,毕献武,彭建堂,刘燊,钟宏,赵军红,蒋国豪.2007.华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题[J].矿床地质,(02):139-152.
    胡瑞忠,付山岭,肖加飞.2016.华南大规模低温成矿的主要科学问题[J].岩石学报,32(11):3239-3251.
    刘崇民,徐外生.1987.北山铅锌黄铁矿矿床成因的地球化学论据[J].物探与化探,(01):31-37.
    刘婷婷,唐菊兴,刘鸿飞,张金树,崔晓亮,高一鸣.2011.西藏墨竹工卡县洞中拉铅锌矿床S、Pb同位素组成及成矿物质来源[J].现代地质,(5):869-876.
    刘英超,侯增谦,杨竹森,田世洪,宋玉财,杨志明,王召林,李政.2008.密西西比河谷型(MVT)铅锌矿床:认识与进展[J].矿床地质,(2):253-264.
    石焕琪,王香成.1988.层、相、位对广西银、锌、镉、黄铁矿矿床的控制作用探讨[J].岩相古地理,36(5):9-15.
    汪劲草.2011.矿体形貌分类及其成矿指示[J].桂林理工大学学报,(4):473-480.
    王磊,韩润生,张艳,王加昇.2016.云南会泽铅锌矿田硫同位素研究[J].矿物岩石地球化学通报,35(6):1248-1257.
    吴开兴,胡瑞忠,毕献武,彭建堂,唐群力.2002.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学,(3):73-81
    谢世业,陈大经,辛厚勤,刘川宁.2004.广西环江县北山地区喷流沉积铅锌矿资源潜力及找矿方向[J].矿产与地质,18(3):217-219.
    杨庆坤,黄强太,孙清钟.2015.江西相山矿田硫铅同位素地球化学特征[J].矿物岩石地球化学通报,(4):755-762.
    曾允孚,刘文均,陈洪德,郑荣才,张锦泉,李孝全,蒋廷操.1992.右江复合盆地的沉积特征及其构造演化[J].南方国土资源,(4):1-14.
    张潮,刘育,刘向东,冯建秋,黄涛,张庆,王旭东.2014.胶西北新城金矿床硫同位素地球化学[J].岩石学报,(9):2495-2506.
    张锦泉,蒋廷操.1994.右江三叠纪弧后盆地沉积特征及盆地演化[J].广西地质,7(2):1-14.
    张静,杨艳,胡海珠,王志光,李国平,李忠烈.2009.河南银洞沟造山型银矿床碳硫铅同位素地球化学[J].岩石学报,(11):2833-2842.
    张良,刘跃,李瑞红,黄涛,张瑞忠,陈炳翰,李金奎.2014.胶东大尹格庄金矿床铅同位素地球化学[J].岩石学报,(9):2468-2480.
    张术根.1989.泗顶—古丹铅锌矿田铅同位素组成特征及其地质意义[J].广西地质,(04):59-65.
    郑永飞,陈江峰.2000.稳定同位素地球化学[M].北京:科学出版社,218-247.
    周朝宪,魏春生,叶造军.1997.密西西比河谷型铅锌矿床[J].地质地球化学,(01):65-75.
    朱炳泉.1998.地球科学中同位素体系理论与应用兼论中国大陆壳幔演化[M].北京:科学出版社
    祝新友,甄世民,程细音,原桂强,杨汉壮,韩英,王艳丽.2017.华南地区泥盆系MVT铅锌矿床S、Pb同位素特征[J].地质学报,91(1):213-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700