用户名: 密码: 验证码:
滇西金宝山富铂钯岩体岩浆源区研究:铂族元素和Sr-Nd同位素约束
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The source of primitive magma for the Jinbaoshan PGE-rich intrusion,western Yunnan:constraints from PGE contents and Sr-Nd isotopes
  • 作者:卢宜冠 ; 和文言
  • 英文作者:LU Yiguan;HE Wenyan;Tianjin Center of Geological Survey,China Geological Survey;State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences;
  • 关键词:岩浆源区 ; 铂族元素 ; 部分熔融 ; 金宝山
  • 英文关键词:magma source;;PGE;;partial melting;;Jinbaoshan
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国地质调查局天津地质调查中心;中国地质大学地质过程与矿产资源国家重点实验室;
  • 出版日期:2018-12-17 11:52
  • 出版单位:地学前缘
  • 年:2018
  • 期:v.25;No.134
  • 基金:国家重点基础研究发展计划“973”项目(2015CB452605,2009CB421008);; 中国地质调查局地质调查项目(12120114013501);; 国家自然科学基金项目(41602089);; 高等学校学科创新引智计划项目(B07011);; 商务部援外项目“津巴布韦哈拉雷、圭鲁地区1:25万区域地球化学调查”
  • 语种:中文;
  • 页:DXQY201806019
  • 页数:13
  • CN:06
  • ISSN:11-3370/P
  • 分类号:202-214
摘要
金宝山杂岩体位于扬子板块西缘,毗邻哀牢山造山带北段,岩体中蕴含丰富的铂钯资源,是峨眉山大火成岩省(ELIP)中大型岩浆型铂族元素矿床。岩体的主要组成为辉石橄榄岩,矿体以似层状、透镜状产出于辉石橄榄岩中。地幔是镍矿床和铂族元素矿床最重要的源区,因而对Ni、Cu及PGE等元素行为的研究,是剖析岩浆型Ni-Cu-PGE矿床源区特征的一个重要研究方向。该研究获得金宝山岩体中辉橄岩铂族元素及Sr-Nd同位素数据,结合前人对ELIP中不同类型岩石系列PGE成分研究及Ni、Cu、PGE等元素在岩浆和硫化物中的分配系数,半定量模拟得到金宝山原始岩浆的形成源于地幔中-高度部分熔融(25%~40%)形成的富PGE岩浆(含12.8×10~(-9) Pd,9.8×10~(-9) Pt,0.6×10~(-9) Rh和0.7×10~(-9) Ir),其铂族元素成分与ELIP苦橄岩成分相当,并且岩浆在演化的过程中遭受了10%~20%地壳混染作用。利用批式部分熔融公式及各铂族元素在硅酸盐矿物和熔体之间的分配系数反演计算得到产生金宝山熔体的地幔约含有5.3×10~(-9) Pd,7.5×10~(-9) Pt,0.75×10~(-9) Rh和1.5×10~(-9) Ir,相比原始地幔而言并没有表现出明显富集PGE的特征。这表明地幔中-高度部分熔融+大量岩浆与硫化物的充分反应是形成大型岩浆型铂族元素矿床的一种可具备的条件。
        The Jinbaoshan complex is located in the west margin of the Yangtze Plate,adjacent to the northern part of the Ailaoshan orogenic belt.It contains abundant Pt-Pd resources and is a large magmatic PGE deposit in the Emeishan Large Igneous Province (ELIP).The complex is mainly composed of wehrlites with ore body presented as stratoid or lentoid in wehrlites.Mantle is the most important source of forming the Ni and PGE deposits,thus the study of Ni,Cu and PGE geochemical behavior is important for understanding the genesis of magmatic Ni-Cu-PGE deposits.In this work we determined the PGE and Sr-Nd isotope contents in wehrlites from the Jinbaoshan intrusion.Combined with PGE studies on different series of rocks in the ELIP and research on the D~(sul/sil) for Ni,Cu and PGE by previous researchers,we suggest that the primitive magma is formed by moderate to high degrees of melting (25%-40%),resulting in 12.8 ppb Pd,9.8 ppb Pt,0.6 ppb Rh,and 0.7 ppb Ir,close to the contents of the ELIP picrite.The Jinbaoshan intrusion has experienced 10%-20% crustal contamination from the Yangtze upper crust during magma evolution.Based on the batch partial melting formula and D~(mineral/melt) parameters for the PGE,the PGE contents of Jinbaoshan mantle were calculated to be 5.3×10~(-9) Pd,7.5×10~(-9) Pt,0.75×10~(-9) Rh,and 1.5×10~(-9) Ir.Compared to primitive mantle,the mantle of the Jinbaoshan intrusion does not show obvious PGE enrichment.Therefore we may conclude that a large magmatic PGE deposit could be formed by moderate to high degrees of mantle melting accompanied by large scale mixing of magma and sulfides.
引文
[1]NALDRETT A J.Magmatic sulfide deposits:geology,geochemistry and exploration[M].New York:Springer,2004:1-727.
    [2]NALDRETT A J.Secular variation of magmatic sulfide deposits and their source magmas[J].Economic Geology,2010,105(3):669-688.
    [3]NALDRETT A J.World-class Ni-Cu-PGE deposits:key factors in their genesis[J].Mineralium Deposita,1999,34(3):227-240.
    [4]CHUNG S L,JAHN B M.Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J].Geology,1995,23(10):889-892.
    [5]XU Y G,CHUNG S L,JAHN B M,et al.Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J].Lithos,2001,58(3):145-168.
    [6]李解,罗照华,杨宗锋,等.攀枝花铁矿朱家包包矿段层状铁矿体的成因:来自矿物结构定量化分析的证据[J].地学前缘,2016,23(3):210-220.
    [7]MUNTEANU M,WILSON A H,COSTIN G,et al.The mafic-ultramafic dykes in the Yanbian terrane(Sichuan province,SW China):record of magma differentiation and emplacement in the Emeishan large igneous province[J].Journal of Petrology,2017,58(3):513-538.
    [8]SONG X Y,ZHOU M F,TAO Y,et al.Controls on the metal compositions of magmatic sulfide deposits in the Emeishan large igneous province,SW China[J].Chemical Geology,2008,253(1):38-49.
    [9]WANG C Y,WEI B,ZHOU M F,et al.A synthesis of magmatic Ni-Cu-(PGE)sulfide deposits in the 260Ma Emeishan large igneous province,SW China and northern Vietnam[J].Journal of Asian Earth Sciences,2018,154:162-186.
    [10]BAI Z J,ZHONG H,NALDRETT A J,et al.Whole-rock and mineral composition constraints on the genesis of the giant Hongge Fe-Ti-V oxide deposit in the Emeishan large igneous province,Southwest China[J].Economic Geology,2012,107(3):507-524.
    [11]LIU P P,ZHOU M F,CHEN W T,et al.In-situ LA-ICP-MS trace elemental analyses of magnetite:Fe-Ti-(V)oxidebearing mafic-ultramafic layered intrusions of the Emeishan large igneous province,SW China[J].Ore Geology Reviews,2015,65:853-871.
    [12]WANG C Y,ZHOU M F.Genesis of the Permian Baimazhai magmatic Ni-Cu-(PGE)sulfide deposit,Yunnan,SWChina[J].Mineralium Deposita,2006,41(8):771-783.
    [13]TAO Y,Li C,HU R Z,et al.Petrogenesis of the Pt-Pd mineralized Jinbaoshan ultramafic intrusion in the Permian Emeishan large igneous province,SW China[J].Contributions to Mineralogy and Petrology,2007,153(3):321-337.
    [14]ZHOU M F,ARNDT N T,MALPAS J,et al.Two magma series and associated ore deposit types in the Permian Emeishan large igneous province,SW China[J].Lithos,2008,103(3):352-368.
    [15]宋谢炎,肖家飞,朱丹,等.岩浆通道系统与岩浆硫化物成矿研究新进展[J].地学前缘,2010,17(1):153-163.
    [16]宋谢炎,张成江,胡瑞忠,等.峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系[J].矿物岩石,2005,25(4):35-44.
    [17]TAO Y,LI C,SONG X Y,et al.Mineralogical,petrological,and geochemical studies of the Limahe mafic-ultramatic intrusion and associated Ni-Cu sulfide ores,SW China[J].Mineralium Deposita,2008,43(8):849-872.
    [18]卢宜冠,赵凯,熊伊曲,等.滇西金宝山铂钯矿床元素地球化学[J].岩石学报,2014,30(9):2681-2694.
    [19]卢宜冠,和文言.滇西金宝山铂钯矿床S-Os同位素特征及其对成矿过程的制约[J].岩石学报,2018,34(5):1258-1270.
    [20]陶琰,高振敏,罗泰义,等.金宝山岩体铂族元素特征及成因意义[J].矿物岩石地球化学通报,2004,23(1):28-31.
    [21]WANG C Y,ZHOU M F,QI L.Origin of extremely PGE-rich mafic magma system:an example from the Jinbaoshan ultramafic sill,Emeishan large igneous province,SW China[J].Lithos,2010,119(1):147-161.
    [22]MARCHESI C,DALE C W,GARRIDO J,et al.Fractionation of highly siderophile elements in refertilized mantle:implications for the Os isotope composition of basalts[J].Earth and Planetary Science Letters,2014,400:33-44.
    [23]WANG C Y,ZHOU M F,QI L.Chalcophile element geochemistry and petrogenesis of high-Ti and low-Ti magmas in the Permian Emeishan large igneous province,SW China[J].Contributions to Mineralogy and Petrology,2011,161(2):237-254.
    [24]KEAYS R R.The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits[J].Lithos,1995,34(1/2/3):1-18.
    [25]LESHER C M,BURNHAM O M.Multicomponent elemental and isotopic mixing in Ni-Cu-(PGE)ores at Kambalda,Western Australia[J].The Canadian Mineralogist,2001,39(2):421-446.
    [26]NALDRETT A J.A model for the Ni-Cu-PGE ores of the Noril’sk region and its application to other areas of flood basalt[J].Economic Geology,1992,87(8):1945-1962.
    [27]ARNDT N T,CZAMANSKE G K,WALKER R J,et al.Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits[J].Economic Geology,2003,98(3):495-515.
    [28]LIGHTFOOT P C,KEAYS R R.Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap,Norilsk region:implications for the origin of the NiCu-PGE sulfide Ores[J].Economic Geology,2005,100(3):439-462.
    [29]MILLER Jr J D,RIPLEY E M.Layered intrusions of the Duluth complex,Minnesota,USA[J].Developments in Petrology,1996,15:257-301.
    [30]王生伟,孙晓明,廖震文,等.云南金宝山铂钯矿床铂族元素地球化学及找矿意义[J].矿床地质,2012,31(6):1259-1276.
    [31]LI C,RIPLEY E M,TAO Y,et al.The significance of PGE variations with Sr-Nd isotopes and lithophile elements in the Emeishan flood basalt province from SW China to northern Vietnam[J].Lithos,2016,248:1-11.
    [32]DENG J,WANG Q F,LI G J,et al.Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region,southwestern China[J].Earth-Science Reviews,2014,138:268-299.
    [33]DENG J,WANG Q F,LI G J,et al.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China[J].Gondwana Research,2014,26(2):419-437.
    [34]DENG J,WANG Q F.Gold mineralization in China:metallogenic provinces,deposit types and tectonic framework[J].Gondwana Research,2016,36:219-274.
    [35]DENG J,WANG Q F,LI G J.Tectonic evolution,superimposed orogeny,and composite metallogenic system in China[J].Gondwana Research,2017,50:216-266.
    [36]邓军,王长明,李文昌,等.三江特提斯复合造山与成矿作用研究态势及启示[J].地学前缘,2014,21(1):52-64.
    [37]杨立强,邓军,赵凯,等.哀牢山造山带金矿成矿时序及其动力学背景探讨[J].岩石学报,2011,27(9):2519-2532.
    [38]杨立强,刘江涛,张闯,等.哀牢山造山型金成矿系统:复合造山构造演化与成矿作用初探[J].岩石学报,2010,26(6):1723-1739.
    [39]陶琰,马言胜,苗来成,等.云南金宝山超镁铁岩体锆石SHRIMP年龄[J].科学通报,2008,53(22):2828-2832.
    [40]李龚健,王庆飞,禹丽,等.哀牢山古特提斯洋缝合时限:晚二叠世花岗岩类锆石U-Pb年代学与地球化学制约[J].岩石学报,2013,29(11):3883-3900.
    [41]潘桂棠,陆松年,肖庆辉,等.中国大地构造阶段划分和演化[J].地学前缘,2016,23(6):1-23.
    [42]欧阳菲,同锐灵,罗先熔,等.云南金宝山含矿岩体热液蚀变特征及其对Pt-Pd元素的富集作用[J].桂林理工大学学报,2015,35(4):686-693.
    [43]同锐灵.云南金宝山铂钯矿床含矿岩体蚀变特征研究[D].桂林:桂林理工大学,2011.
    [44]梁细荣,韦刚健,李献华,等.利用MC-ICPMS精确测定143Nd/144 Nd和Sm/Nd比值[J].地球化学,2003(1):91-96.
    [45]韦刚健,梁细荣,李献华,等.(LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成[J].地球化学,2002(3):295-299.
    [46]TANAKA T,TOGASHI S,KAMIOKA H,et al.JNdi-1:a neodymium isotopic reference in consistency with LaJolla neodymium[J].Chemical Geology,2000,168(3/4):279-281.
    [47]陶琰,胡瑞忠,漆亮,等.云南金宝山铂钯矿Sr-Nd-Os同位素组成:岩浆成因及演化分析[J].矿物岩石,2010,30(2):60-67.
    [48]XU Y G,HE B,CHUNG S L,et al.Geologic,geochemical,and geophysical consequences of plume involvement in the Emeishan flood-basalt province[J].Geology,2004,32(10):917-920.
    [49]XIAO L,XU Y G,MEI H J,et al.Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province,SW China:implications for plumelithosphere interaction[J].Earth and Planetary Science Letters,2004,228(3):525-546.
    [50]KAMENETSKY V S,CHUNG S L,KAMENETSKY M B,et al.Picrites from the Emeishan large igneous province,SWChina:a compositional continuum in primitive magmas and their respective mantle sources[J].Journal of Petrology,2012,53(10),2095-2113.
    [51]CHAI G,NALDRETT A J.The Jinchuan ultramafic intrusion:cumulate of a high-Mg basaltic magma[J].Journal of Petrology,1992,33(2):277-303.
    [52]LI C,RIPLEY E M.The relative effects of composition and temperature on olivine-liquid Ni partitioning:statistical deconvolution and implications for petrologic modeling[J].Chemical Geology,2010,275(1/2):99-104.
    [53]GHIORSO M S,SACK R O.Chemical mass transfer in magmatic processes IV.A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures[J].Contributions to Mineralogy and Petrology,1995,119(2/3):197-212.
    [54]LI C,TAO Y,QI L,et al.Controls on PGE fractionation in the Emeishan picrites and basalts:constraints from integrated lithophile-siderophile elements and Sr-Nd isotopes[J].Geochimica et Cosmochimica Acta,2012,90:12-32.
    [55]LI J,XU J F,SUZUKI K,et al.Os,Nd and Sr isotope and trace element geochemistry of the Muli picrites:insights into the mantle source of the Emeishan large igneous province[J].Lithos,2010,119(1/2):108-122.
    [56]ZINDLER A,HART S.Annual review of earth and planetary sciences[J].Chemical Geodynamics,1986,14:493-571.
    [57]GAO S,LING W,QIU Y,et al.Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:evidence for cratonic evolution and redistribution of REEduring crustal anatexis[J].Geochimica et Cosmochimica Acta,1999,63(13/14):2071-2088.
    [58]MA C Q,EHLERS C,XU C H,et al.The roots of the Dabieshan ultrahigh-pressure metamorphic terrane:constraints from geochemistry and Nd-Sr isotope systematics[J].Precambrian Research,2000,102(3):279-301.
    [59]CHEN J,JAHN B M.Crustal evolution of southeastern China:Nd and Sr isotopic evidence[J].Tectonophysics,1998,284(1/2):101-133.
    [60]BARNES S J,LIGHTFOOT P C.Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents[J].Economic Geology,2005,34:179-214.
    [61]LESHER C M.Roles of xenomelts,xenoliths,xenocrysts,xenovolatiles,residues,and skarns in the genesis,transport,and localization of magmatic Fe-Ni-Cu-PGE sulfides and chromite[J].Ore Geology Reviews,2017,90:465-484.
    [62]LESHER C M,STONE W E.Exploration geochemistry of komatiites[R].Geological Association of Canada Short Course Notes,1996,12:153-204.
    [63]ARNDT N T,LESHER C M,CZAMANSKE G K,et al.Mantle-derived magmas and magmatic Ni-Cu-(PGE)deposits[J].Economic Geology,2005,34:5-24.
    [64]KEAYS R R,LIGHTFOOT P C.Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits:evidence from chalcophile element signatures of Siberian and Deccan Trap basalts[J].Mineralium Deposita,2010,45(3):241-257.
    [65]RIPLEY E M,LI C.Sulfide saturation in mafic magmas:is external sulfur required for magmatic Ni-Cu-(PGE)ore genesis?[J].Economic Geology,2013,108(1):45-58.
    [66]BARNES S J,NALDRETT A J.Fractionation of the platinum-group elements and gold in some komatiites of the Abitibi greenstone belt,northern Ontario[J].Economic Geology,1987,82(1):165-183.
    [67]REHKMPER M,HALLIDAY A N,FITTON J G,et al.Ir,Ru,Pt,and Pd in basalts and komatiites:new constraints for the geochemical behavior of the platinum-group elements in the mantle[J].Geochimica et Cosmochimica Acta,1999,63(22):3915-3934.
    [68]MCDONOUGH W F,SUN S S.The composition of the Earth[J].Chemical Geology,1995,120(3/4):223-253.
    [69]HERZBERG C.Depth and degree of melting of komatiites[J].Journal of Geophysical Research:Solid Earth,1992,97(B4):4521-4540.
    [70]BARNES S J,MAIER W D.The fractionation of Ni,Cu and the noble metals in silicate and sulphide liquids[R].Geological Association Canada Short Course Notes,1999,13:69-106.
    [71]LE ROUX V,DASGUPTA R,LEE C T.Mineralogical heterogeneities in the Earth's mantle:constraints from Mn,Co,Ni and Zn partitioning during partial melting[J].Earth and Planetary Science Letters,2011,307(3/4):395-408.
    [72]MALLMANN G,O’NEILL H S C.The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting[J].Geochimica et Cosmochimica Acta,2007,71(11):2837-2857.
    [73]MUNGALL J E,BRENAN J M.Partitioning of platinumgroup elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements[J].Geochimica et Cosmochimica Acta,2014,125:265-289.
    [74]BRENAN J M,MCDONOUGH W F,DALPE C.Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt[J].Earth and Planetary Science Letters,2003,212(1):135-150.
    [75]GANNOUN A,BURTON K W,DAY J M,et al.Highly siderophile element and Os isotope systematics of volcanic rocks at divergent and convergent plate boundaries and in intraplate settings[J].Reviews in Mineralogy and Geochemistry,2016,81(1):651-724.
    [76]RIGHTER K,CAMPBELL A J,HUMAYUN M,et al.Partitioning of Ru,Rh,Pd,Re,Ir,and Au between Crbearing spinel,olivine,pyroxene and silicate melts[J].Geochimica et Cosmochimica Acta,2004,68(4):867-880.
    [77]REN Z Y,WU Y D,ZHANG L,et al.Primary magmas and mantle sources of Emeishan basalts constrained from major element,trace element and Pb isotope compositions of olivine-hosted melt inclusions[J].Geochimica et Cosmochimica Acta,2017,208:63-85.
    [78]TONNELIER N J.Geology and genesis of the Jinchuan NiCu-(PGE)deposit,China[D].Sudbury,Canada:Laurentian University,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700