用户名: 密码: 验证码:
高温高应变率下纯钼动态力学性能与失效行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Mechanical Properties and Failure Behavior of Pure Molybdenum at High Temperature and High Strain Rate
  • 作者:于金程 ; 秦丰 ; 钱王欢 ; 田学锋 ; 陈玉平
  • 英文作者:YU Jincheng;QIN Feng;QIAN Wanghuan;TIAN Xuefeng;CHEN Yuping;School of Mechanical Technology,Wuxi Institute of Technology;
  • 关键词:高应变率 ; SHPB ; 纯钼 ; 动态力学性能 ; 失效行为
  • 英文关键词:high strain rates;;SHPB;;pure molybdenum;;dynamic mechanical property;;failure behavior
  • 中文刊名:YOUS
  • 英文刊名:Nonferrous Metals Engineering
  • 机构:无锡职业技术学院机械技术学院;
  • 出版日期:2019-05-23
  • 出版单位:有色金属工程
  • 年:2019
  • 期:v.9
  • 基金:江苏省高等学校自然科学研究项目(17KJD430006);; 江苏省高等学校优秀科技创新团队项目(3115001931)~~
  • 语种:中文;
  • 页:YOUS201905005
  • 页数:6
  • CN:05
  • ISSN:10-1004/TF
  • 分类号:33-38
摘要
为研究纯钼在高应变率下的动态力学性能及失效行为,在室温及高温情况下,采用分离式Hopkinson压杆试验装置(SHPB)对纯钼进行了动态压缩实验,利用扫描电子显微镜(SEM)对冲击压缩后的试样进行了断口分析。结果表明,在冲击压缩载荷作用下,纯钼动态压缩力学性能随温度的升高而降低;在已测试的温度下,室温、应变率为1 800s~(-1)时,纯钼具有相对较大的动态压缩屈服强度,为1 110MPa,且具有相对较大的动态抗压强度,为1 087MPa;在800℃、应变率为2 000s~(-1)时,纯钼具有相对较大的应变量,为17.6%;而在300℃、应变率为2 200s~(-1)时,纯钼具有较好的综合动态力学性能;高温、高应变率下纯钼的动态压缩断裂机制为准解理断裂。
        In order to study the dynamic mechanical properties and failure behavior of pure molybdenum at high strain rate,a dynamic compression experiment of pure molybdenum was carried out using Split Hopkinson Pressure Bar(SHPB)at room temperature and high temperature.The specimens fracture after impact compression was analyzed by Scanning Electron Microscopy(SEM).The results show that under the impact compression load,the dynamic mechanical properties of pure molybdenum decrease with the increase of temperature.Under the test temperature,when at the room temperature and the strain rate is 1 800 s~(-1),the pure molybdenum has a relatively large dynamic compressive yield strength of 1 100 MPa and a relatively large dynamic compressive strength of 1 087 MPa.At 800℃and the strain rate is 2 000 s~(-1),the pure molybdenum has a relatively largest strain of 17.6%.At 300℃and the strain rate is 2 200 s~(-1),the pure molybdenum has better comprehensive dynamic mechanical properties.The dynamic compressive fracture mechanism of pure molybdenum at high temperature and high strain rate is quasicleavage fracture.
引文
[1]韩晨,孙付涛.国内钼板生产与应用现状分析[J].有色金属设计,2015,42(4):54-59.HAN Chen,SUN Futao.Analysis on domestic production and application of molybdenum sheet[J].Nonferrous Metals Design,2015,42(4):54-59.
    [2]吕康亭,邵必林,李娜,等.金堆城露天钼矿某剖面处边坡稳定性的不确定性方法分析[J].有色金属工程,2015,5(4):69-73.LV Kangting,SHAO Bilin,LI Na,et al.The uncertainty methods of slope stability analysis in a profile of JinDuiCheng molybdenum open pit[J].Nonferrous Metals Engineering,2015,5(4):69-73.
    [3]CHO G S,AHN G B,CHOE K H.Creep microstructures and creep behaviors of pure molybdenum sheet at 0.7Tm[J].International Journal of Refractory Metals&Hard Materials,2015,50:52-57.
    [4]DI Y,MARQUIS A K,PETER M,et al.In situ TEMinvestigation of Xe ion irradiation induced defects and bubbles in pure molybdenum single crystal[J].Journal of Nuclear Materials,2013,437(1-3):240-249.
    [5]BOLITSCHEK J,LUIDOLD S,SULLIVAN M O.A study of the impact of reduction conditions on molybdenum morphology[J].International Journal of Refractory Metals&Hard Materials,2018,71:325-329.
    [6]李正丹.河南某钼多金属矿工艺矿物学研究[J].有色金属工程,2014,4(1):48-52.LI Zhengdan.Study on the technology and mineralogy of a molybdenum polymetallic ore in Henan province[J].Nonferrous Metals Engineering,2014,4(1):48-52.
    [7]ZHANG G J,SUN Y J,ZUO C,et al.Microstructure and mechanical properties of multi components rare earth oxide-doped molybdenum alloys[J].Materials Science&Engineering A,2008,483-484(1):350-352.
    [8]郭磊,宋瑞,淡新国,等.稀土钼合金制备工艺及强韧化机理研究现状[J].中国钼业,2017,41(2):45-51.GUO Lei,SONG Rui,DAN Xinguo,et al.Present research status of preparation technology of rare earth molybdenum alloys and strengthening-toughening mechanism[J].China Molybdenum Industry,2017,41(2):45-51.
    [9]冯鹏发,赵虎,杨秦莉,等.钼金属的脆性与强韧化技术研究进展[J].铸造技术,2011,32(4):554-558.FENG Pengfa,ZHAO Hu,YANG Qinli,et al.Research progress on brittleness of molybdenum and the technologies of its strengthening and toughening[J].Foundry Technology,2011,32(4):554-558.
    [10]WANG Y,WANG D Z,ZHU W,et al.Microstructure and properties of hot-rolled 2%MoSi2/rare earth oxide doped molybdenum alloys[J].International Journal of Refractory Metals&Hard Materials,2012,31:152-156.
    [11]张青来,李敏,韩寅奔,等.交叉轧制钼带冷深冲性能及微观组织研究[J].稀有金属材料与工程,2012,41(12):2109-2112.ZHANG Qinglai,LI Min,HAN Yanben,et al.Study on cold deep drawing performance and microstructures of cross-rolled molybdenum strip[J].Rare Metal Materials and Engineering,2012,41(12):2109-2112.
    [12]LIU G,ZHANG G J,JIANG F,et al.Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility[J].Nature Materials,2013,12(4):344-350.
    [13]李继文,杨松涛,魏世忠,等.轧制方式和变形量对纯钼板坯微观组织和织构的影响[J].稀有金属,2014,38(3):348-353.LI Jiwen,YANG Songtao,WEI Shizhong,et al.Microstructure and texture of pure molybdenum sheet at different rolling methods and deformation[J].Chinses Journal of Rare Metals,2014,38(3):348-353.
    [14]孟宝,万敏,吴向东,等.纯钼板材真空环境高温拉深性能研究[J].稀有金属材料与工程,2015,44(6):1385-1390.MENG Bao,WAN Min,WU Xiangdong,et al.Hightemperature deep drawability of pure molybdenum sheet in vacuum environment[J].Rare Metal Materials and Engineering,2015,44(6):1385-1390.
    [15]MENG B,WAN M,WU X D,et al.Constitutive modeling for high-temperature tensile deformation behavior of pure molybdenum considering strain effects[J].International Journal of Refractory Metals&Hard Materials,2014,45:41-47.
    [16]CHAUDHURI A,SARKAR A,SUWAS S,et al.Investigation of stress-strain response,microstructure and texture of hot deformed pure molybdenum[J].International Journal of Refractory Metals&Hard Materials,2018,73:168-182.
    [17]GEREMY K,BENOITR R B,CRYSTAL L P.High strain-rate plastic deformation of molybdenum:Experimental investigation,constitutive modeling and validation using impact tests[J].International Journal of Impact Engineering,2016,96:116-128.
    [18]MARTINA S,LORENZO P,FEDERICO.Investigation and mechanical modelling of pure molybdenum at high strain-rate and temperature[J].Journal of Dynamic Behavior of Materials,2016,2(4):460-475.
    [19]谢若泽,张方举,颜怡霞,等.高温SHPB实验技术及其应用[J].爆炸与冲击,2005,25(4):330-334.XIE Ruoze,ZHANG Fangju,YANG Yixia,et al.High-temperature SHPB experimental technique and its application[J].Explosion and Shock Waves,2005,25(4):330-334.
    [20]许金余,刘健,范飞林,等.高温SHPB冲击实验技术及其应用[J].高压物理学报,2013,27(1):57-62.XU Jinyu,LIU Jian,FAN Feilin,et al.A high temperature SHPB impact experimental technique and its application[J].Chinese Journal of High Pressure Physics,2013,27(1):57-62.
    [21]宋博,宋力,胡时胜.SHPB实验数据处理的解耦方法[J].爆炸与冲击,1998,18(2):167-171.SONG Bo,SONG Li,HU Shisheng.Coupling solved method of SHPB experimental data processing[J].Explosion and Shock Waves,1998,18(2):167-171.
    [22]宋力,胡时胜.SHPB数据处理中的二波法与三波法[J].爆炸与冲击,2005,25(4):368-373.SONG Li,HU Shisheng.Two-wave and three-wave method in SHPB data processing[J].Explosion and Shock Waves,2005,25(4):368-373.
    [23]PRIMIG S,LEITNER H,CLEMENS H,et al.On the recrystallization behavior of technically pure molybdenum[J].International Journal of Refractory Metals and Hard Materials,2010,28(6):703-708.
    [24]DOHERTY R D,HUGHES D A,HUMPHREYS F J,et al.Current issues in recrystallization:a review[J].Materials Science&Engineering A,1997,238(2):219-274.
    [25]谢汉芳,李付国,王玉凤,等.粉末金属钼的动态再结晶行为研究[J].稀有金属材料与工程,2011,40(4):669-672.XIE Hanfang,LI Fuguo,WANG Yufang,et al.Study on dynamic recrystallization behavior of powder metallurgy molybdenum[J].Rare Metal Materials and Engineering,2011,40(4):669-672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700