用户名: 密码: 验证码:
氢氧化钠刻蚀多孔氧化铝表面形貌与疏水性能相关关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Relationship Between the Hydrophobicity and the Surface Morphology of NaOH Solution Etched Porous Anodic Aluminum Oxide
  • 作者:陈新华 ; 陈峥 ; 王豫宁
  • 英文作者:CHEN Xinhua;CHEN Zheng;WANG Yuning;School of Chemistry and Chemical Engineering,Xuchang University;Xuchang Senior High School;
  • 关键词:微米纳米结构 ; 氢氧化钠 ; 多孔阳极氧化铝 ; 氟硅烷 ; 疏水性
  • 英文关键词:micron and nanostructures;;sodium hydrate;;porous anodic aluminum oxide;;fluoroalkylsilane;;hydrophobicity
  • 中文刊名:XYSK
  • 英文刊名:Journal of Xinyang Normal University(Natural Science Edition)
  • 机构:许昌学院化学化工学院;许昌市高级中学;
  • 出版日期:2019-03-22 11:25
  • 出版单位:信阳师范学院学报(自然科学版)
  • 年:2019
  • 期:v.32;No.135
  • 基金:国家自然科学基金项目(21171143)
  • 语种:中文;
  • 页:XYSK201902020
  • 页数:6
  • CN:02
  • ISSN:41-1107/N
  • 分类号:115-120
摘要
以多孔阳极氧化铝(AAO)膜为基材,用氢氧化钠溶液进行化学腐蚀,控制适当的条件,得到了不同形貌的AAO基氧化铝表面.采用氟硅烷修饰后,对其进行了接触角测试、X射线光电子能谱(XPS)分析和扫描电子显微镜(SEM)形貌表征.结果表明:刻蚀过程中,AAO膜多孔表面层及多孔本体层中孔壁较薄的部分首先被溶断,样品干燥过程中,在水的表面张力的作用下形成了沟壑状微米级狭长裂缝.当AAO膜本体层大部分孔壁被溶断后,就形成了氧化铝纳米线.在其自身重力及水的表面张力的作用下,氧化铝纳米线聚积成微米级簇状结构,从而形成蜂巢状微米纳米相结合的双尺度阶层结构.这种蜂巢状结构修饰氟硅烷后,其对水的静态接触角(151.7°)远远高于氟硅烷修饰的纳米孔洞结构表面(138.3°)和光滑表面(101°).
        Surfaces of alumina with different morphologies have been fabricated by etching the porous anodic aluminum oxide( AAO) membrane with NaOH solution under proper conditions. And then,the etched surfaces were modified with fluoroalkylsilane( FAS). The water contact angles of the modified surfaces were detected by contact angle method,and the surface composition and morphologies were characterized by X-ray photoelectron spectroscopy( XPS) and scanning electron microscopy( SEM). The results showed that the thin part of the pore walls in the porous surface layer and the porous bulk layer of AAO film was first dissolved in the process of etching AAO film with NaOH solution,and micron sized narrow cracks were formed under the action of the surface tension of water. Alumina nanowires were formed when most of the pore walls of AAO films were dissolved.The alumina nanowires accumulated into micron-scale clusters under the action of the gravity and surface tension of water during the process of drying,resulting in the formation of the honeycomb-like micron-and nano-composite double-scale hierarchical structures. The static water contact angle of the FAS-modified honeycomb-like structured surface( 151.7 °) was much higher than that of the FAS-modified nanoporous surface( 138.3 °) and the smooth surface( 101 °).
引文
[1]WANG Shutao,LIU Kesong,YAO Xi,et al. Bioinspired surfaces with superwettability:New insight on theory,design,and applications[J].Chemical Reviews,2015,115(16):8230-8293.
    [2]侯珂珂,陈新华,张万强,等.水下超疏油铜网的制备及其油水分离应用研究[J].信阳师范学院学报(自然科学版),2018,31(1):88-91.HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al. Fabrication of underwater superoleophobic copper mesh and its application in oil/water separation[J]. Journal of Xinyang Normal University(Natural Science Edition),2018,31(1):88-91.
    [3]FENG Lin,LI Shuhong,LI Yingshun,et al. Super-hydrophobic surfaces:From natural to artificial[J]. Advanced Materials,2002,14(24):1857-1860.
    [4]FENG Lin,ZHANG Yanan,XI Jinming,et al. Petal effect:A superhydrophobic state with high adhesive force[J]. Langmuir,2008,24(8):4114-4119.
    [5]CHEN Xinhua,YANG Guangbin,KONG Linghao,et al. Different wetting behavior of alkyl-and fluorocarbon-terminated films based on cupric hydroxide nanorod quasi-arrays[J]. Materials Chemistry and Physics,2010,123(1):309-313.
    [6]CHEN Xinhua,KONG Linghao,DONG Dong,et al. Synthesis and characterization of superhydrophobic functionalized Cu(OH)2nanotube arrays on copper foil[J]. Applied Surface Science,2009,255(7):4015-4019.
    [7]CHEN Xinhua,KONG Linghao,DONG Dong,et al. Fabrication of functionalized copper compound hierarchical structure with bionic superhydrophobic properties[J]. The Jouenal of Physical Chemistry C,2009,113(14):5396-5401.
    [8]CHEN Xinhua,YANG Guangbin,KONG Linghao,et al. Direct growth of hydroxy cupric phosphate heptahydrate monocrystal with honeycomblike porous structures on copper surface mimicking lotus leaf[J]. Crystal Growth&Design,2009,9(6):2656-2661.
    [9]STEINHART M,WENDORFF J H,GREINER A,et al. Polymer nanotubes by wetting of ordered porous templates[J]. Science,2002,296(5575):1997-1997.
    [10]ZHU Lin,SHI Pan,XUE Jian,et al. Superhydrophobic stability of nanotube array surfaces under impact and static forces[J]. ACS Applied Materials&Interfaces,2014,6(11):8073-8079.
    [11]NEVIN T,DENIZ A,ALEXANDR J,et al. Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane-modified nanoporous alumina[J]. Nanoscale Research Letters,2011,6(1):487-495.
    [12]LEE W,PARK B G,KIM D H,et al. Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces:From highly adhesive to self-cleanable[J]. Langmuir,2010,26(3):1412-1415.
    [13]PENG Shan,TIAN Dong,MIAO Xinrui,et al. Designing robust alumina nanowires-on-nanopores structures:Superhydrophobic surfaceswith slippery or sticky water adhesion[J]. Journal of Colloid and Interface Science,2013,409(11):18-24.
    [14]KIM D H,KIM Y S,KIM B M,et al. Uniform superhydrophobic surfaces using micro/nano complex structures formed spontaneously by a simple and cost-effective nonlithographic process based on anodic aluminum oxide technology[J]. Journal of Micromechanics and Microengineering:Structures,Devices,and Systems,2011,21(4):045003-045008.
    [15]CHEN Xinhua,CAO Xinyu,CHEN Guangming,et al. Fabrication of superhydrophobic surfaces via poly(methyl methacrylate)-modified anodic aluminum oxide membrane[J]. Journal of Coatings Technology and Research,2014,11(5):711-716.
    [16]CHEN Xinhua,CHEN Guangming,MA Yongmei,et al. Conductive super-hydrophobic surfaces of polyaniline modified porous anodic alumina membranes[J]. Journal of Nanoscience and Nanotechnology,2006,6(3):783-786.
    [17]LIU Huan,LI Shuhong,ZHAI Jin,et al. Self-assembly of large-scale micropatterns on aligned carbon nanotube films[J]. Angewandte Chemie International Edition,2004,43(9):1146-1149.
    [18]WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry,1936,28(8):988-994.
    [19]CASSIE A B D,BAXTER S. Wettability of porous surfaces[J]. Trans Faraday Soc,1944,40(1):546-551.
    [20]CASSIE A B D. Contact angles[J]. Discussions of the Faraday Society,1948,3(5):11-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700