用户名: 密码: 验证码:
大洋多金属结核的矿物学特征与南极底流(AABW)活动
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mineralogical Characteristics of Oceanic Polymetallic Nodules and the Activities of the Antarctic Bottom Water (AABW)
  • 作者:袁良榕 ; 张恩
  • 英文作者:YUAN Liang-Rong;ZHANG En;School of Earth Science and Geological Engineering,Sun Yat-sen University;Guangdong Key Laboratory of Mineral Resources &.Geological Processes, Sun Yat-sen University;
  • 关键词:多金属结核 ; 矿物学 ; 南极底流(AABW) ; 大洋环境 ; 深海成矿
  • 英文关键词:polymetallic nodules;;mineralogy;;Antarctic bottom water(AABW);;oceanic environment;;deep-sea mineralization
  • 中文刊名:KWXB
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:中山大学地球科学与地质工程;广东省地质过程与矿产资源探查重点实验室;
  • 出版日期:2018-05-21 17:07
  • 出版单位:矿物学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(批准号:41273054)
  • 语种:中文;
  • 页:KWXB201805003
  • 页数:9
  • CN:05
  • ISSN:52-1045/P
  • 分类号:16-24
摘要
总结了大洋多金属结核的形态、构造类型、矿物组合、区域分布等特征,及其对南极底流活动的反映。采用扫描电镜(SEM)对结核生长过程中构造类型的变化进行连续观察,结合透射电镜(TEM)与X射线粉晶衍射(XRD)分析结果对结核的矿物类型作进一步的确定。结果表明,结核的形态、构造类型、矿物组成之间有着很好的响应关系,且受控于南极底流活动强弱的影响,结核形成初期(核心层),南极底流活动强度较强、海水氧化性较高,形成的锰矿物以水羟锰矿为主,构造类型多为斑杂状。结核生长中、后期(外壳层),南极底流活动较弱、海水氧化性较低,形成的锰矿物以钙锰矿为主,其构造类型逐渐过渡为柱状构造及纹层状构造。此外,多金属结核的区域分布及元素变化特征与南极底流活动具有密切联系,南极底流活动区往往对应着多金属结核的大面积分布区,南极底流活动区和非活动区δCe_N和Ce/La值具有明显差别。
        This paper has summarized the characteristics, such as the morphology, structural type, regional distribution and mineral assemblage, of ocean polymetallic nodules and their responses to the activities of the Antarctic bottom water(AABW). Scanning electron microscopy(SEM) was used to continuously observe the change of structural types during the growth of nodules, then Transmission electron microscopy(TEM) and X-ray powder diffraction(XRD) were used to analyze and further confirm mineral types of nodules. The results show that there are good responses among the morphology, structure type, and mineral assemblage of the polymetallic nodules, and those characteristics were influenced by the intensity of activities of the AABW. In the early stage of the formation, the core of the nodule was formed under conditions of strong activity of the AABW and relatively high oxidizability of the seawater. Thus the core has major manganese mineral of vernadite and major taxitic structure. In the middle and late stages, the shells of the nodule) were formed under conditions of relatively weak activity of the AABW and the relatively low oxidizability of the seawater. Thus, the shells have major manganese mineral of todorokite and structure types gradually transiting form the columnar structure to the lamellar structure. In addition, characteristics of the regional distribution and elemental variation of polymetallic nodules are closely related to the activities of the AABW. The strong activities of the AABW are often corresponded to the wide distribution of polymetallic nodules. The δCe_N and Ce/La values of the nodules in the active AABW area are obviously different to those of the nodules in the inactive AABW area.
引文
[1]Manheim F T. Marine cobalt resources[J]. Science, 1986, 232(4750):600.
    [2]Banakar V K, Galy A, Sukumaran N P, et al. Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean[J]. Earth & Planetary Science Letters, 2003, 205(3):337-348.
    [3]Claude C, Suhr G, Hofmann A W, et al. U-Th chronology and paleoceanographic record in a Fe-Mn crust from the NE Atlantic over the last 700 ka[J]. Geochimica Et Cosmochimica Acta, 2005, 69(20):4845-4854.
    [4]单连芳, 姚德. 铁锰结核的矿物相变和其它次生变化[J]. 矿物学报, 1993(2):150-162.
    [5]Wen X, Carlo E H D, Li Y H. Interelement relationships in ferromanganese crusts from the central Pacific Ocean: Their implications for crust genesis[J]. Marine Geology, 1997, 136(3-4):277-297.
    [6]Ling H F, Jiang S Y, Frank M, et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean[J]. Earth & Planetary Science Letters, 2005, 232(3-4):345-361.
    [7]符亚洲, 彭建堂, 屈文俊, 等. 中太平洋富钴结壳剖面的锇同位素组成[J]. 科学通报, 2005, 50(15):1654-1659.
    [8]Banakar V K, Hein J R. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean[J]. Marine Geology, 2000, 162(2):529-540.
    [9]徐兆凯, 李安春, 蒋富清,等. 东菲律宾海晚中新世末期以来古海洋环境演化的新型铁锰结壳记录[J]. 中国科学:, 2007, 37(4):512-520.
    [10]张丽洁, 戚长谋. 海底沉积铁锰矿床形成机制讨论[J]. 海洋地质与第四纪地质, 1998(2):75-80.
    [11]韩杰, 叶瑛, 张维睿. 大洋锰结核(壳)中南极底流活动的矿物学与地球化学记录[J]. 矿物岩石地球化学通报, 2006, 25(2):154-159.
    [12]Gilbert I M, Pudsey C J, Murray J W. A sediment record of cyclic bottom-current variability from the northwest Weddell Sea[J]. Sedimentary Geology, 1998, 115(1):185-214(30).
    [13]Dezileau L, Bareille G, Reyss J L, et al. Evidence for strong sediment redistribution by bottom currents along the southeast Indian ridge[J]. Deep-Sea Research Part I, 2000, 47(10):1899-1936.
    [14]Kenneth J P. Marine geology [ M]. Prentice-Hall, New Jersey: Englewood Cliffs, 1982.
    [15]Rhein M, Stramma L, Krahmann G. The spreading of Antarctic bottom water in the tropical Atlantic[J]. Deep Sea Research Part I Oceanographic Research Papers, 1998, 45(4):507-527.
    [16]许东禹. 多金属结核形成的古海洋环境[M]. 地质出版社, 1994.
    [17]黄永样, 李杨, 梁德华. 东太平洋海盆CC区晚新生代沉积史与多金属结核生长史的对比[J]. 南海地质研究, 1996(8):24-36.
    [18]Kawabe M, Fujio S, Yanagimoto D. Deep-water circulation at low latitudes in the western North Pacific[J]. Deep Sea Research Part I Oceanographic Research Papers, 2003, 50(5):631-656.
    [19]Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas[J]. Earth & Planetary Science Letters, 1984, 68(1):73-87.
    [20]Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications[J]. Geochimica Et Cosmochimica Acta, 1995, 59(24):5113-5132.
    [21]Moore T C, Sancetta C, Pisias N. Cenozoic Hiatuses in Pelagic Sediments[J]. Micropaleontology, 1978, 24(2):113-138.
    [22]Jr T C M. The Distribution of Radiolarian Assemblages in the Modern and Ice-Age Pacific[J]. Marine Micropaleontology, 1978, 3(3):229-266.
    [23]朱而勤. 大洋锰结核矿物学[M]. 济南:山东大学出版社, 1987.
    [24]武光海, 周怀阳. 富钴结壳生长过程中铁锰氧化物矿物组合的变化[J]. 矿物学报, 2001, 21(2):137-143.
    [25]牛京考. 中国对大洋多金属结核研究与开发述评[J]. 中国矿业, 1996(5):5-6.
    [26]钱江初, 初凤友, 冯旭文. 大洋多金属结核中几种常见锰矿相的特征及其相关性[J]. 矿物学报, 2006, 26(2):34-40.
    [27]刘新波. 太平洋中部多金属结核矿物地球化学研究[D]. 中国海洋大学, 2005.
    [28]陈建林, 张富生. 东太平洋多金属结核中的钡镁锰矿[J]. 沉积学报, 1996, (a00):171-180.
    [29]萧绪琦, 郭立鹤, 刘新波. 太平洋多金属结核中的锰矿物及其相变[J]. 岩石矿物学杂志, 1997(4):367-373.
    [30]董明明, 翟世奎, 韩宗珠,等. 西太平洋某海域锰结核的矿物学及矿物化学研究[J]. 海洋湖沼通报, 2007(4):67-75.
    [31]Baar H J W D, Bacon M P, Brewer P G, et al. Rare earth elements in the Pacific and Atlantic Oceans [J]. Geochimica Et Cosmochimica Acta, 1985, 49(9):1943-1959.
    [32]Post J E. Manganese oxide minerals: crystal structures and economic and environmental significance[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3447-54.
    [33]张丽洁, 戚长谋. 海底沉积铁锰矿床形成机制讨论[J]. 海洋地质与第四纪地质, 1998(2):75-80.
    [34]Calvert S E, Price N B. Geochemical variation in ferromanganese nodules and associated sediments from the Pacific Ocean[J]. Marine Chemistry, 1977, 5(1):43-74.
    [35]Rogers J. Seismic, bathymetric and photographic evidence of widespread erosion and a manganese-nodule pavement along the continental rise of the Southeast Cape Basin[J]. Marine Geology, 1987, 78(1-2):57-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700