用户名: 密码: 验证码:
中间相碳微球/氰酸酯树脂复合材料的导电导热性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrically and thermally conductive performance of mesocarbon microbeads/cyanate ester resin composites
  • 作者:张有茶 ; 贾成厂 ; 贾鹏
  • 英文作者:ZHANG Youcha;JIA Chengchang;JIA Peng;Institute for Advanced Materials and Technology,University of Science and Technology Beijing;Beijing United Coatings Technology Co.Ltd.;
  • 关键词:中间相碳微球 ; 氰酸酯树脂 ; 体积电阻率 ; 导热性 ; 吸水性
  • 英文关键词:mesocarbon microbeads(MCMBs);;cyanate ester resin(CE);;volume resistivity;;thermal conductivity;;water absorption
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:北京科技大学新材料研究院;北京联合涂层技术有限公司;
  • 出版日期:2018-09-19 16:29
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(51471023)
  • 语种:中文;
  • 页:FUHE201903008
  • 页数:9
  • CN:03
  • ISSN:11-1801/TB
  • 分类号:64-72
摘要
选取M22、M15和M23三种不同粒径中间相碳微球(MCMBs)作为填料,分别以10vol%、25vol%、40vol%和50vol%体积分数填充氰酸酯树脂(CE)制备了MCMBs/CE复合材料,通过SEM、XRD、拉曼光谱仪、导热仪、体积电阻仪分析了不同粒径的MCMBs/CE复合材料的性能。结果表明:三种球形粉体都具有石墨化结构,其中M22粉体球形度最好、石墨化程度最高(ID/IG=0.23)、体积电阻率最小。三种MCMBs粉体制备的MCMBs/CE复合材料的吸水性、导热性和导电性均随填充量的增加而增大,冲击强度则先增大后减小。其中以M22在40vol%填充率下所得MCMBs/CE复合材料的综合性能最优,吸水率为0.45%,冲击强度为23.6kJ/m2,热导率达1.28W/(m·K),体积电阻率达1.5Ω·cm。
        The mesocarbon microbeads(MCMBs)with different size and fabrication process(M22,M15 and M23)were fabricated cyanate ester resin(CE)(MCMBs/CE)composites with volume fraction of 10 vol%,25 vol%,40 vol%and 50 vol%of MCMBs.The MCMBs/CE composites were characterized by SEM,XRD,Raman spectrum,thermal analyzer and resistance instrument.The results indicate that all the three spherical powders have the graphitization structure.Compared to M15 and M23,the M22 filler shows a regular spherical particle,the highest carbonization(ID/IG=0.23)and the lowest volume resistivity.The moisture resistance,thermal conductivity and electrical conductivity of the MCMBs/CE composites are enhanced with the increasing of fillers volume fraction.While,the impact strength of composites presents a marginal reduction with further increase in filler content.The MCMBs/CE composite achieves a low water absorption of 0.45%,a high impact strength of 23.6 kJ/m2,a high thermal conductivity of 1.28 W/(m·K)and a low volume resistivity of 1.5Ω·cm containing 40 vol% M22 filler.
引文
[1]GU X,ZHANG Z J,LI Y,et al.Developing high performance cyanate ester resin with significantly reduced postcuring temperature while improved toughness,rigidity,thermal and dielectric properties based on manganese-Schiff base hybridized graphene oxide[J].Chemical Engineering Journal,2016,298:214-224.
    [2]LIN C H.Synthesis of novel phosphorus-containing cyanate esters and their curing reaction with epoxy resin[J].Polymer,2004,45(23):7911-7926.
    [3]秦滢杰,韩建平,陈书华.一种氰酸酯-环氧树脂作为卫星结构件复合材料基体的评价[J].复合材料学报,2018,35(3):528-536.QIN Y J,HAN J P,CHEN S H.Evaluation of a cyanate ester-epoxy resin as the matrix of composites used for structural components of satellites[J].Acta Materiae Compositae Sinica,2018,35(3):528-536(in Chinese).
    [4]蔡文甫,王帆,李仕宇,等.共聚改性耐高温氰酸酯树脂的制备及其性能研究[J].复合材料学报,2013,30(s1):15-18.CAI W F,WANG F,LI S Y,et al.Study on the binary copolymer of cyanate ester resin with high temperature resistance performance[J].Acta Materiae Compositae Sinica,2013,30(s1):15-18(in Chinese).
    [5]MIN C,YU D M,CAO J Y,et al.A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity[J].Carbon,2013,55:116-125.
    [6]RUOFF R S,BALANDIN A A,CAI W W,et al.Thermal conductivity of isotopically modified graphene[J].Nature Materials,2012,11(3):203-207.
    [7]LI J,MA P C,CHOW W S,et al.Correlations between percolation threshold,dispersion state,and aspect ratio of carbon nanotubes[J].Advanced Functional Materials,2007,17(16):3207-3215.
    [8]XIE C,LI Y,HAN Y.Fabrication and properties of CTBN/Si3N4/cyanate ester nanocomposites[J].Polymer Composites,2016,37(8):2522-2526.
    [9]ZHAO C,XU S,QIN Y,et al.Thermally conductive cyanate ester nanocomposites filled with graphene nanosheets and multiwalled carbon nanotubes[J].Polymers for Advanced Technologies,2014,25(12):1546-1551.
    [10]GUAN Q,YUAN L,ZHANG Y,et al.Improving the mechanical,thermal,dielectric and flame retardancy properties of cyanate ester with the encapsulated epoxy resin-penetrated aligned carbon nanotube bundle[J].Composites Part B:Engineering,2017,123:81-91.
    [11]YANG S B,SONG H H,CHEN X H,et al.Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries[J].Electrochemistry Communications,2006,8(1):137-142.
    [12]KIM J S,YOON W Y,YOO K S,et al.Charge-discharge properties of surface-modified carbon by resin coating in Li-ion battery[J].Journal of Power Sources,2002,104(2):175-180.
    [13]WANG Z,WU B,GONG Q M,et al.In situ fabrication of carbon nanotube/mesocarbon microbead composites from coal tar pitch[J].Materials Letters,2008,62(20):3585-3587.
    [14]ASTM International.Standard test method for water absorption of plastics:ASTM D570-98[S].West Conshohocken:ASTM International,2018.
    [15]ASTM International.Standard test methods for determining the izod pendulum impact resistance of plastics:ASTM D256-10[S].West Conshohocken:ASTM International,2018.
    [16]SHUI H,FENG Y,SHEN B,et al.Kinetics of mesophase transformation of coal tar pitch[J].Fuel Processing Technology,1988,55(2):153-160.
    [17]YANG L J,CHENG X Q,GAO Y Z,et al.Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling[J]ACS Applied Materials&Interfaces,2014,6(15):12962-12970.
    [18]LI S,LIN B F,TZENG S S,et al.Structure and properties of mesophase pitch-derived carbon foams reinforced by mesocarbon microbeads[J].International Journal of Materials Research,2016,107(2):148-157.
    [19]SONG L J,LIN S S,YU B J,et al.Anode performance of mesocarbon microbeads for sodium-ion batteries[J].Carbon,2015,95:972-977.
    [20]CARMONA F.Conducting filled polymers[J].Physica A:Statistical Mechanics and its Applications,1989,157(1):461-469.
    [21]RUSCHAU G R,YOSHIKAWA S,NEWNHAM R E.Resistivities of conductive composites[J].Journal of Applied Physics,1992,72(13):953-959.
    [22]LIN F,BHATIA G S,FORD J D.Thermal conductivities of powder-filled epoxy resins[J].Journal of Applied Polymer Science,1993,49(11):1901-1908.
    [23]BRUGGEMAN D A G.Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen I:Dielektrizittskonstanten und Leitfhigkeiten der Mischk9rper aus isotropen Substanzen[J].Annalen der Physik,1935,416(7):636-664.
    [24]AGARI Y,UEDA A,NAGAI S.Thermal conductivities of composites in several types of dispersion systems[J].Journal of Applied Polymer Science,1991,42(6):1665-1669.
    [25]MUSCATO O,STEFANO V D.Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors[J].Journal of Physics A:Mathematical and Theoretical,2011,44(10):105501.
    [26]FANG X Y,WANG K,HOU Z L,et al.Electronic scattering leads to anomalous thermal conductivity of n-type cubic silicon carbide in the high-temperature region[J].Journal of Physics:Condensed Matter,2012,24(44):445802-445807.
    [27]NAN C W,BIRRINGER R,CLARKE D R,et al.Effective thermal conductivity of particulate composites with interfacial thermal resistance[J].Journal of Applied Physics,1997,81(10):6692-6699.
    [28]吴宇明,虞锦洪,曹勇,等.高导热低填量聚合物基复合材料研究进展[J].复合材料学报,2018,35(4):760-766.WU Y M,YU J H,CAO Y,et al.Review of polymer-based composites with high thermal conductivity and low filler loading[J].Acta Materiae Compositae Sinica,2018,35(4):760-766(in Chinese).
    [29]RAVICHANDRAN J,AJAY K Y,RAMEZ C,et al.Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices[J].Nature Materials,2014,13(2):168-172.
    [30]何穗华,洪新密,肖小亭,等.超声振动对石墨烯微片/聚丙烯复合材料导电导热性能的影响机制[J].复合材料学报,2017,34(9):1911-1918.HE S H,HONG X M,XIAO X T,et al.Mechanism of the ultrasonic vibration influence on electrical and thermal conductivity of GNP/PP composites[J].Acta Materiae Compositae Sinica,2017,34(9):1911-1918(in Chinese).
    [31]SUNIL K,KARADA D A,FRANK R J.Moisture absorption by cyanate ester modified epoxy resin matrices Part III:Effect of blend composition[J].Composites Part A:Applied Science and Manufacturing,2002,33(12):1665-1675.
    [32]赵文杰,胡求学,闫雯玲,等.改性亚麻布/不饱和聚酯复合材料的吸湿性及力学性能[J].复合材料学报,2018,35(1):35-43.ZHAO W J,HU Q X,YAN W L,et al.Moisture absorption and mechanical property of modified linen/unsaturated polyester composites[J].Acta Materiae Compositae Sinica,2018,35(1):35-43(in Chinese).
    [33]MARIETA C,SCHULZ E,IRUSTA L,et al.Evaluation of fiber surface treatment and toughening of thermoset matrix on the interfacial behavior of carbon fiber-reinforced cyanate matrix composites[J].Composites Science and Technology,2005,65(14):2189-2197.
    [34]马万翔,王薇薇,何其慧,等.E-51环氧树脂改性双酚A型氰酸酯树脂的研究[J].热固性树脂,2011,26(1):6-10.MA W X,WANG W W,HE Q H,et al.Study of E-51epoxy resin modified bosphenol A cyanate ester resins[J].Thermosetting Resin,2011,26(1):6-10(in Chinese).
    [35]SHIGEYUKI S.Handbook of advanced ceramics:materials,applications,processing,and properties[M].2nd ed.New York:Academic Press Inc,2013.
    [36]WU S.A generalized criterion for rubber toughening:The critical matrix ligament thickness[J].Journal of Applied Polymer Science,2010,35(2):549-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700