用户名: 密码: 验证码:
多波束声学底质分类研究进展与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress and Prospect of Acoustic Seabed Classification Using Multibeam Echo Sounder
  • 作者:唐秋华 ; 纪雪 ; 丁继胜 ; 周兴华 ; 李杰
  • 英文作者:TANG Qiu-hua;JI Xue;DING Ji-sheng;ZHOU Xing-hua;LI Jie;First Institute of Oceanography,MNR;Shandong Science and Technology University;State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing;
  • 关键词:多波束测深系统 ; 反向散射强度 ; 海底底质分类
  • 英文关键词:multibeam echo sounder;;backscatter strength;;seabed sediment classification
  • 中文刊名:HBHH
  • 英文刊名:Advances in Marine Science
  • 机构:自然资源部第一海洋研究所;山东科技大学测绘科学与工程学院;测绘遥感信息工程国家重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:海洋科学进展
  • 年:2019
  • 期:v.37
  • 基金:国家重点研发计划项目——水下参考框架点建设与维护技术(2016YFB0501703);; 国家自然科学基金项目——多波束声呐数据精细处理技术及其在海底形态特征分析中的应用研究(41876111)
  • 语种:中文;
  • 页:HBHH201901001
  • 页数:10
  • CN:01
  • ISSN:37-1387/P
  • 分类号:5-14
摘要
多波束勘测技术是20世纪60年代以来发展起来的新一代海底地形地貌测量技术。多波束测深系统不但可以获取高精度的水深地形数据,而且可以同时获取高分辨率的海底反向散射强度数据。随着多波束测深技术的革新和应用,其声学底质探测功能得到不断的挖掘和推广,基于多波束反向散射强度数据,并结合一定数量的传统底质取样数据对海底底质分类,工作效率高且获取的资料连续、丰富,为海底底质类型划分提供了一种迅速可靠的方法,是传统海底底质取样和沉积物分类的有益补充。主要论述了国内外多波束海底底质分类技术的研究现状,梳理了多波束底质分类各环节所涉及的关键技术,分析了该领域存在的主要问题,介绍了目前典型的多波束底质探测设备及底质分类软件,展望了多波束底质分类研究的发展趋势与应用前景。
        Multibeam echo sounding is a new generation of submarine topographic and geomorphic survey technology developed since 1960 s.By using this technology,it can not only get high precision bathymetric and topographic data,but obtain high resolution seabed backscattering strength data.With the continuous innovation and wide application of the technology,its acoustic seabed sediments detection function has been continuously explored and popularized.Combining with the field sampling data for seabed sediment classification,the backscattering strength has become a rapid and reliable method,which is characterized by high efficiency,continuous data acquisition and abundant information.And it can be regarded as a useful supplement for traditional sediment classification method.This study mainly discussed the research status of multibeam submarine sediment classification technology at home and abroad,clarified the key technologies involved in the multibeam bottom quality classification,analyzed its main problems,and introduced the typical multibeam bottom.We proposed some future developments in quality detection equipment and substrate classification software,the trend and application prospects of multibeam bottom classification research.
引文
[1] WU Z Y,ZHENG C L,CHU F Y,et al.Research status and prospect of sonar-detecting techniques near submarine[J].Advance in Earth Sciences,2005,20(11):58-65.吴自银,郑玉龙,初凤友,等.海底浅表层信息声探测技术研究现状及发展[J].地球科学进展,2005,20(11):58-65.
    [2] JIN X L.The development of research in marine geophysics and acoustic technology for submarine exploration[J].Progress in Geophysics,2007,22(4):1243-1249.金翔龙.海洋地球物理研究与海底探测声学技术的发展[J].地球物理学进展,2007,22(4):1243-1249.
    [3] LIU Y X,DU J,WU Z L,et al.Preliminary investigation on the Yongle Blue Hole in Xisha Islands[J].Advances in Marine Science,2017,35(3):305-316.刘焱雄,杜军,吴志露,等.西沙永乐龙洞探秘前期调查工作综述[J].海洋科学进展,2017,35(3):305-316.
    [4] JI X,TANG Q H,ZHOU X H,et al.Research summary of the seabed sediment classification based on the multibeam backscatter strength data[C]∥Proceedings of The Twenty-eighth Comprehensive Symposium on Marine Surveying and Mapping Society,Xi′an,2016:121-125.纪雪,唐秋华,周兴华,等.基于多波束声强数据的海底底质分类研究综述[C]∥第28届海洋测绘学会综合性学术研讨会论文集,西安,2016:121-125.
    [5] HUANG M T,ZHAI G J,WANG R,et al.The detection of abnormal data in marine survey[J].Acta Geodaeticaet Cartographica Sinica,1999,28(3):269-276.黄谟涛,翟国君,王瑞,等.海洋测量异常数据的检测[J].测绘学报,1999,28(3):269-276.
    [6] TANG Q H,ZHOU X H,DING J S,et al.Study on processing of multibeam backscatter data[J].Haiyang Xuebao,2006,28(2):51-55.唐秋华,周兴华,丁继胜,等.多波束反向散射强度数据处理研究[J].海洋学报,2006,28(2):51-55.
    [7] WILSON W D.Speed of sound in sea water as a function of temperature,pressure and salinity[J].The Journal of the Acoustical Society of America,1960,32(6):641.
    [8] HUGHES C J E,MAYER L A,SHAW J,et al.Data handling methods and target detection results for multibeam and sidescan data collected as part of the search for SwissAir Flight 111[C]∥Shallow Water Survey Conference Proceedings,Sydney,1999:1-11.
    [9] HUGHES C J E,MAYER L A,WELLS D E.Shallow-water imaging multibeam sonars:a new tool for investigating seafloor processes in the coastal zone and on the continental shelf[J].Marine Geophysical Research,1996,18(6):607-629.
    [10] HAMID R,HADI J R.Target localization and tracking for an isogradient sound speed profile[J].IEEE Transactions on Signal Processing,2013,61(6):1434-1446.
    [11] HE L B,ZHAO J H,ZHANG H M,et al.A precise multibeam sound ray tracking method taking into account the attitude angle[J].Journal of Harbin Engineering University,2015,36(1):46-50.何林帮,赵建虎,张红梅,等.顾及姿态角的多波束声线精确跟踪方法[J].哈尔滨工程大学学报,2015,36(1):46-50.
    [12] ZHOU X,LI H S,ZHOU T,et al.Multibeam seafloor imaging technology based on the multiple sub-array detection method[J].Journal of Harbin Engineering University,2012,33(2):1-6.刘晓,李海森,周天,等.基于多子阵检测法的多波束海底成像技术[J].哈尔滨工程大学学报,2012,33(2):1-6.
    [13] URICK R J.Principles of underwater sounder[M].New York:McGraw-Hill,1983.
    [14] CHU D,HUFNAGLE L C.Time varying gain(TVG)measurements of a multibeam echo sounder for applications to quantitative acoustics[C]∥IEEE Oceans 2006Conference Proceding,Boston,2006:1-6.
    [15] MICHALOPOULOU ZH,ALEXANDROU D,DEMOUSTIER C.Application of neural and statistical classifiers to the problem of seafloor characterization[J].IEEE Journal of Oceanic Engineering,1995,20(3):190-197.
    [16] JIN S H,ZHAI J S,LIU Y C,et al.Influence of seafloor incidence angle on multibeam backscatter intensity and corrected method[J].Geomatics and Information Science of Wuhan University,2011,36(9):1081-1084.金绍华,翟京生,刘雁春,等.海底入射角对多波束反向散射强度的影响及其改正[J].武汉大学学报(信息科学版),2011,36(9):1081-1084.
    [17] HELLEQUIN L,BOUCHER J M,LURTON X.Processing of high-frequency multibeam echo sounder data for seafloor characterization[J].IEEE Journal of Oceanic Engineering,2003,28(1):78-89.
    [18] JI X.Classification of seabed sediment and terrain complexity based on multibeam data[D].Qingdao:The First Institute of Oceanography,SOA,2017.纪雪.基于多波束数据的海底底质及地形复杂度分类研究[D].青岛:国家海洋局第一海洋研究所,2017.
    [19] CHANG Y C,HSU S K,TSAI C H.Sidescan sonar image processing:correcting brightness variation and patching gaps[J].Journal of Marine Science and Technology,2010,18(6):785-789.
    [20] ZHANG Z L,LI J C,SHEN Z K.A new fast scan line filling algorithm for complicated connecting region[J].Computer Engineering and Applications,2005,40(31):6-8.张志龙,李吉成,沈振康.一种新的快速复杂连通区域扫描线填充算法[J].计算机工程与应用,2005,40(31):6-8.
    [21] XU S P,LIU Z J,ZUO Z Q,et al.Improved active-edge-table area filling algorithm[J].Computer Engineering and Applications,2014,50(17):178-181.徐胜攀,刘正军,左志权,等.一种改进的活性边表区域填充算法[J].计算机工程与应用,2014,50(17):178-181.
    [22] CHAVEZ JR P S,ISBRECHT J,GALANIS P,et al.Processing,mosaicking and management of the Monterey Bay digital sidescan-sonar images[J].Marine Geology,2002,181(1):305-315.
    [23] HAO Y L,HAN Q N,XU C.A mutlibeam data joining algorithm based on false grey scale double-template matching[J].Journal of Harbin Engineering University,2011,32(7):927-931.郝燕玲,韩庆楠,徐聪.伪灰度双模板匹配的多波束数据拼接算法[J].哈尔滨工程大学学报,2011,32(7):927-931.
    [24] BIOT M A.Theory of propagation of elastic waves in a fluid-saturated porous solid:I.Low-frequency range[J].The Journal of the Acoustical Society of America,1956,28(2):168-178.
    [25] BIOT M A.Theory of propagation of elastic waves in a fluid-saturated porous solid:II.Higher frequency range[J].The Journal of the Acoustical Society of America,1956,28(2):179-191.
    [26] JACKSON D R,BAIRD A M,CRISP J J,et al.High-frequency bottom backscatter measurements in shallow water[J].The Journal of the Acoustical Society of America,1986,80(4):1188-1199.
    [27] HUGHES C J.Toward remote seafloor classification using the angular response of acoustic backscattering:a case study from multiple overlapping GLORIA data[J].IEEE Journal of Oceanic Engineerin,1994,19(1):112-127.
    [28] LANDMARK K,SOLBERG A H S,AUSTENG A.Bayesian seabed classification using angle-dependent backscatter data from multibeam echo sounders[J].IEEE Journal of Oceanic Engineering,2014,39(4):724-739.
    [29] JIN S H,XIAO F M,BIAN G,et al.Influence of seafloor incidence angle on multibeam backscatter intensity and corrected method[J].Geomatics and Information Science of Wuhan University,2014,39(12):1493-1498.金绍华,肖付民,边刚,等.利用多波束反向散射强度角度响应曲线的底质特征参数提取算法[J].武汉大学学报(信息科学版),2014,39(12):1493-1498.
    [30] ZHAO J H,YAN J,ZHANG H M,et al.Two self-adaptive methods of improving multibeam backscatter image quality by removing angular response effect[J].Journal of Marine Science and Technology,2016,22(2):288-300.
    [31] SANTOS R,RODRIGUES A,QUARTAU R.Acoustic remote characterization of seabed sediments using the angular range analysis technique:the inlet channel of Tagus River estuary(Portugal)[J].Marine Geology,2018,400:60-75.
    [32] PACE N G,GAO H.Swathe seabed classification[J].IEEE Journal of Oceanic Engineering,1988,13(2):83-90.
    [33] CAMRICHEAL D R,LINNETT L M,CLARKE S J,et al.Seabed classification through multifractal analysis of sidescan sonar imagery[C]∥Rodar Sonar and Navigation,IEEE Proceedings.1996,143(3):140-148.
    [34] LU B,LI G X,HUANG S J.Technical acoustics,discrimination of seafloor sediment properties from sound velocity waveform and amplitude[J].Technical Acoustics,2007,26(1):6-14.卢博,李赶先,黄韶健.用声学三参数判别海底沉积物性质[J].声学技术,2007,26(1):6-14.
    [35] LU B,LI G X,LIU Q.A study on seafloor sediment and its acouso-physical properties in the southeast offshore sea area of Hainan Island in China[J].Haiyang Xuebao,2007,29(4):34-42.卢博,李赶先,刘强,等.海南岛东南外海海底沉积物特征及其声学物理性质研究[J].海洋学报,2007,29(4):34-42.
    [36] GOFF J A,OLSON H C,DUNCAN C S.Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments,New Jersey Margin[J].Geo-Marine Letters,2000,20:43-49.
    [37] GONIDEC Y L,LAMARCHE G,WRIGHT I C.Inhomogeneous substrate analysis using EM300backscatter imagery[J].Marine Geophysical Researches,2003,24:311-327.
    [38] COLLIER J S,BROWN C J.Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments[J].Marine Geology,2005,214:431-449.
    [39] PICAN N,TRUCCO E,ROSS M,et al.Texture analysis for seabed classification:co-occurrence matrices vs.self-organizing maps[J].OCEANS’98Conference Proceedings,1998,1:424-428.
    [40] ZHAO Y Z,TANG J S,ZHONG H P.Seabed sediment classification based on texture features of sonar imagery[J].Hydrographic Surveying and Charting,2015,35(3):60-63.赵永祯,唐劲松,钟何平.基于声纳图像纹理特征的海底底质分类方法研究[J].海洋测绘,2015,35(3):60-63.
    [41] MA F H,E D C,ZHAO J H,et al.Seabed classification based on ISODAT algorithm[J].Journal of Geomatics,2008(6):43-45.马飞虎,鄂栋臣,赵建虎,等.基于ISODATA算法的海底底质分类[J].测绘信息与工程,2008(6):43-45.
    [42] VANESSA L,GEOFFROY L.Unsupervised fuzzy classification and object-based image analysis of multibeam data to map deep water substrates,Cook Strait,New Zealand[J].Continental Shelf Research,2011,31(11):1236-1247.
    [43] TAN YASUHIRO,TAN JOO KOOI,KIM HYOUNGSEOP.Automatic classification of seabed sediments based on HLAC[J].IEEE/SICE International Symposium on System Integration(SII),Kobe,Japan,2013:653-658.
    [44] YOU J C,MAO H H,DUAN W H,et al.Classification of seabed sediment using the fuzzy C mean clustering and support vector machine methods[J].Marine Sciences,2014,38(11):122-130.尤加春,毛慧慧,段文豪,等.基于模糊C均值聚类-支持向量机的海底沉积物分类识别[J].海洋科学,2014,38(11):122-130.
    [45] LL,JIN S H,BIAN G,et al.The application of K-means clustering analysis algorithm in multibeam seafloor classification[J].Hydrographic Surveying and Charting,2018,38(3):64-68.吕良,金绍华,边刚,等.K-均值聚类算法在多波束底质分类中的应用[J].海洋测绘,2018,38(3):64-68.
    [46] ALEXANDROU D,PANTZARTZIS D.Seafloor classification with neural networks[C]∥Conference Proceedings,on Engineering in the Ocean Environment,Washington,1990,1:18-23.
    [47] MARSH I,BROWN C.Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank(AreaIV)[J].Applied Acoustics,2009,70(10):1269-1276.
    [48] CHAKRABORTY B,KAUSTUBHA R,HEGDE A,et al.Acoustic seafloor sediment classification using self-organizing feature maps[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(12):2722-2725.
    [49] CHAKRABORTY B,KODAGALI V,BARACHO J.Sea-floor classification using multibeam echo-sounding angular backscatter data:a real-time approach employing hybrid neural network architecture[J].IEEE Journal of Oceanic Engineering,2003,28(1):121-128.
    [50] TANG Q H,ZHOU X H,DING J S,et al.Seafloor classification from multibeam backscatter data using learning vector quantization neural network[J].Geomatics and Information Science of Wuhan University,2006,31(3):229-232.唐秋华,周兴华,丁继胜,等.学习向量量化神经网络在多波束底质分类中的应用研究[J].武汉大学学报(信息科学版),2006,31(3):229-232.
    [51] TANG Q H,LIU B H,CHEN Y Q,et al.Application of LVQ neural network combined with the genetic algorithm in acoustic seafloor classification[J].Chinese Journal of Geophysics,2007,50(1):313-319.唐秋华,刘保华,陈永奇,等.结合遗传算法的LVQ神经网络在声学底质分类中的应用[J].地球物理学报,2007,50(1):313-319.
    [52] TANG Q H,LIU B H,CHEN Y Q,et al.Acoustic seafloor classification using self-organizing map neural network[J].Technical Acoustics,2007,26(3):380-384.唐秋华,刘保华,陈永奇,等.基于自组织神经网络的声学底质分类研究[J].声学技术,2007,26(3):380-384.
    [53] TANG Q H,LIU B H,CHEN Y Q,et al.The interpolation of sound velocity profile in horizontal plane in multibeam echo sounding[J].Hydrographic Surveying and Charting,2009,29(5):40-43.唐秋华,刘保华,陈永奇,等.基于改进BP神经网络的海底底质分类[J].海洋测绘,2009,29(5):40-43.
    [54] TANG Q H,LEI N,LI J,et al.Seabed mixed sediment classification with multi-beam echo sounder backscatter data in jiaozhou bay[J].Marine Georesources&Geotechnology,2015,33(1):1-11.
    [55] HE L B,ZHAO J H,ZHANG H M,et al.Seabed sediment classification based on multibeam grid echo intensity and improved BP neural network[J].Journal of China University of Mining&Technology,2014,43(5):956-962.何林帮,赵建虎,张红梅,等.基于MB栅格回波强度和改进BPNN的底质分类[J].中国矿业大学学报,2014,43(5):956-962.
    [56] CHEN J B,WU Z Y,ZHAO D N,et al.Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swam optimization algorithms[J].Haiyang Xuebao,2017,39(9):51-57.陈佳兵,吴自银,赵荻能,等.基于粒子群优化算法的PSO-BP海底声学底质分类方法[J].海洋学报,2017,39(9):51-57.
    [57] LI J,TRAN M,SIWABESSY J.Selecting optimal random forest predictive models:a case study on predicting the spatial distribution of seabed hardness[J].PloS One,2016,11(2):e0149087.
    [58] HERKUL K,PETERSON A,PAEKIVI S.Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows[J].Estuarine,Coastal and Shelf Science,2017,192(6):57-71.
    [59] TURNER J A,BABCOCK R C,HOVEY R.Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps?[J].Estuarine,Coastal and Shelf Science,2018,204(6):149-163.
    [60] PAN F L,LU B,HUANG S J.A discussion on the possibility of using acoustic telemetry to classify sedimentary layers[C]∥Institute of Oceanography,South China Sea,Chinese Academy of Sciences.Proceedings of acoustooptic field research in Nansha Sea.Beijing:Science Publishing House,1996.潘福林,卢博,黄韶健.用声学遥测进行沉积层分类的可能性探讨[C]∥中国科学院南海海洋研究所.南沙海域声光场研究论文集.北京:科学出版社,1996.
    [61] STEPHENS D,DIESING M.A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data[J].PLoS One,2014,9(4):e93950.doi:10.1371/journal.pone.0093950.eCollection 2014.
    [62] ZHAI G J,WU T Q,OUYANG Y Z,et al.The development of airborne laser bathymetry[J].Hydrographic Surveying and Charting,2012,32(2):67-70.翟国君,吴太旗,欧阳永忠,等.机载激光测深技术研究进展[J].海洋测绘,2012,32(2):67-70.
    [63] SHI Z W,YANG F L,LIU X,et al.Brief introduction of airborne laser bathymetric system and its application in classification of seafloor sediments[J].China Water Transport,2013,13(10):292-295.时振伟,阳凡林,刘翔,等.用简述机载激光测深系统及其在海底底质分类中的应用[J].中国水运,2013,13(10):292-295.
    [64] LIANG J J,YANG Y M,ZHU Z W,et al.Statistical classification on landforms of advances in 13°~14°S mid-atlantic ridge and proposed sulfide mine sites[J].Advances in Marine Science,2015,33(3):305-312.梁娟娟,杨耀民,朱志伟,等.大西洋中脊13°~14°S热液沉积区地形统计分类及勘探靶区初选[J].海洋科学进展,2015,33(3):305-312.
    [65] MA Y,ZHANG J,ZHANG J Y,et al.Progress in shallow water depth mapping from optical remote sensing[J].Advances in Marine Science,2018,36(3):331-351.马毅,张杰,张靖宇,等.浅海水深光学遥感研究进展[J].海洋科学进展,2018,36(3):331-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700