用户名: 密码: 验证码:
连续切片技术在三维重构中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of serial sectioning technology in three-dimensional reconstruction
  • 作者:李瑶 ; 魏振伟 ; 刘昌奎 ; 原梅妮 ; 王剑
  • 英文作者:LI Yao;WEI Zhenwei;LIU Changkui;YUAN Meini;WANG Jian;College of Mechanical and Electrical Engineering,North University of China;AECC Beijing Institute of Aeronautical Materials;Failure Analysis Center of Aviation Industry Corporation of China;Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation;Aviation Key Laboratory of Science and Technology on Materials Testing and Evaluation;
  • 关键词:连续切片技术 ; 三维重构 ; 微观结构 ; 定量表征
  • 英文关键词:serial sectioning technique;;three-dimensional reconstruction;;microstructure;;quantitative characterization
  • 中文刊名:BCKG
  • 英文刊名:Ordnance Material Science and Engineering
  • 机构:中北大学机电工程学院;中国航发北京航空材料研究院;航空工业失效分析中心;航空材料检测与评价北京市重点实验室;材料检测与评价航空科技重点实验室;
  • 出版日期:2018-10-18 14:12
  • 出版单位:兵器材料科学与工程
  • 年:2019
  • 期:v.42;No.292
  • 基金:国家自然科学基金(2016YFB0701401)
  • 语种:中文;
  • 页:BCKG201901034
  • 页数:6
  • CN:01
  • ISSN:33-1331/TJ
  • 分类号:133-138
摘要
三维显微组织形态的观测和定量表征是材料学科的核心问题,近年来以连续切片技术为基础的三维重构技术已经成为研究材料三维结构的热点。连续切片技术因其操作简单,成本低廉等优势在材料科学研究中应用广泛。总结连续切片技术常用的方法,并阐述各种方法的适用范围、试验步骤,分析比较了各自的优缺点。最后简要介绍基于连续切片技术的三维重构在材料科学领域的应用,提出通过制定流程规范、完善金相图谱、多学科协同等方法解决目前重构组织差异明显、后期图像处理困难以及工作量大等问题。
        The observation and quantitative characterization of three-dimensional microstructures of materials are the core issues of materials science.In recent years,three-dimensional reconstruction technology based on two-dimensional image processing of materials has become a focus for studying the three-dimensional structure of materials.Serial sectioning technology has a wide range of applications in materials science research due to its simple operation and low cost.The common methods of serial sectioning technique are summarized,and the scopes of application,experimental procedures of various methods are introduced,the respective advantages and disadvantages are analyzed and compared.Finally,the application of three-dimensional reconstruction based on serial sectioning technology in the field of materials science is briefly introduced,It is proposed to solve the problems of obvious reconstruction organization differences,late image processing difficulties and heavy workload by formulating process specifications,perfecting metallographic maps and multidisciplinary collaboration.
引文
[1]韩远飞,曾卫东,赵永庆.显微组织三维重构技术在材料科学研究领域中的应用[J].材料导报,2012,26(21):113-118.
    [2]刘坤,徐磊,李双明,等.三维重构技术在金属材料微观结构研究中的应用[J].材料导报,2012,26(19):116-120.
    [3]骆良顺,王新,苏彦庆,等.基于连续切片的三维重构技术在材料凝固组织研究中的应用[J].材料导报,2010,24(9):1-5.
    [4]SINGH H,GOKHALE A M. Visualization of three-dimensional microstructures[J]. Materials Characterization,2005,54(1):21-29.
    [5]赵秀阳,尹衍升.基于三维重构的材料微观结构研究现状[J].材料导报,2005,19(10):1-3.
    [6]RHINES F N,CRAIG K R,ROUSSE D A. Measurement of average grain volume and certain topological parameters by serial section analysis[J]. Metallurgical Transactions A,1976,7(11):1729-1734.
    [7]LI M,GHOSH S,RICHMOND O,et al. Three dimensional characterization and modeling of particle reinforced metal matrix composites:part I:Quantitative description of microstructural morphology[J]. Materials Science&Engineering A,1999,265(1/2):153-173.
    [8]阮秋琦.数字图像处理学[M].电子工业出版社,2013:429-453.
    [9]吴伟,吴剑剑,张永华,等.基于数字图像处理的TC4钛合金金相组织定量分析[J].失效分析与预防,2014,9(2):75-79.
    [10]SINGH H,GOKHALE A M,TEWARI A,et al. Three-dimensional visualization and quantitative characterization of primary silicon particles in an Al-Si base alloy[J]. Scripta Materialia,2009,61(4):441-444.
    [11]TEWARI A,GOKHALE A M. Application of serial sectioning for estimation of three-dimensional grain size distribution in a liquid phase sintered microstructure[J]. Mater Charact,2001,46:329-35.
    [12]TEWARI A,GOKHALE A M. Estimation of three-dimensional grain size distribution from microstructural serial sections[J]. Materials Characterization,2001,46(4):329-335.
    [13]SPOWART J E,MULLENS H E,PUCHALA B T. Collecting and analyzing microstructures in three dimensions:A fully automated approach[J]. JOM,2003,55(10):35-37.
    [14]陈少平,张桂梅,王斯财.基于小波变换和Canny算子的齿轮边缘检测[J].失效分析与预防,2010,5(4):199-203.
    [15]DUNN D N,HULL R. Reconstruction of three-dimensional chemistry and geometry using focused ion beam microscopy[J]. Applied Physics Letters,1999,75(21):3414-3416.
    [16]ORLOFF J,UTLAUT M,SWANSON L. High resolution focused ion beams:FIB and its applications[J]. Physics Today,2004,57(1):54-55.
    [17]BANSAL R K,KUBIS A,HULL R,et al. High-resolution three-dimensional reconstruction:A combined scanning electron microscope and focused ion-beam approach[J]. Journal of Vacuum Science&Technology B Microelectronics&Nanometer Structures,2006,24(2):554-561.
    [18]GROEBER M A,HALEY B K,UCHIC M D. 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system[J]. Materials Characterization,2006,57(4):259-273.
    [19]UCHIC M D,GROEBER M A,DIMIDUK D M,et al. 3D microstructural characterization of nickel superalloys via serialsectioning using a dual beam FIB-SEM[J]. Scripta Materialia,2006,55(1):23-28.
    [20]KONRAD J,ZAEFFERER S,RAABE D. Investigation of orientation gradients around a hard Laves particle in a warmrolled FeAl-based alloy using a 3D EBSD-FIB technique[J].Acta Materialia,2006,54(5):1369-1380.
    [21]KOTULA P G,KEENAN M R,MICHAEL J R. Tomographic spectral imaging with multivariate statistical analysis:Comprehensive 3D microanalysis[J]. Microscopy&Microanalysis,2006,12(1):36-48.
    [22]EICHEN E,AARONSON H I,POUND G M,et al. Thermionic emission microscope study of the formation of ferrite sideplates[J]. Acta Metallurgica,1964,12(11):1298-1301.
    [23]KUIJPERS N C W,TIREL J,HANLON D N,et al. Quantification of the evolution of the 3D intermetallic structure in a6005A aluminium alloy during a homogenisation treatment[J]. Materials Characterization,2002,48(5):379-392.
    [24]朱会,杨湘杰,郭洪民. A356铝合金近球晶组织三维重构及空间结构表征[J].热加工工艺,2013,42(17):27-31.
    [25]吴保亮.铸件微观组织结构三维重构技术研究[D].南昌:南昌大学,2015.
    [26]王晓晶,郑洲顺,宋敏,等.金属粉末及纤维烧结颈形貌的三维重构[J].中国体视学与图像分析,2017(2):127-132.
    [27]刘洪军,张东旭,张靖宇.半固态7075铝合金组织的连续切片三维重构[J].特种铸造及有色合金,2017,37(4):354-357.
    [28]赖勇来,莫乙亮,马腾飞,等. AZ91D镁合金铸态组织三维重构[J].特种铸造及有色合金,2018(1):18-21.
    [29]LEE S G,GOKHALE A M,SREERANGANATHAN A. Reconstruction and visualization of complex 3D pore morphologies in a high-pressure die-cast magnesium alloy[J]. Materials Science&Engineering A,2006,427(1/2):92-98.
    [30]LIEBERMAN S I,GOKHALE A M,TAMIRISAKANDALA S. Reconstruction of three-dimensional microstructures of TiB whiskers in powder processed Ti-6Al-4V-1B alloys[J]. Materials Characterization,2007,58(6):527-533.
    [31]LIEBERMAN S I,GOKHALE A M,TAMIRISAKANDALA S. Reconstruction of three-dimensional microstructures of TiB phase in a powder metallurgy titanium alloy using montage serial sectioning[J]. Scripta Materialia,2006,55(1):63-68.
    [32]SHARMA H,BOHEMEN S M C V,PETROV R H,et al.Three-dimensional analysis of microstructures in titanium[J].Acta Materialia,2010,58(7):2399-2407.
    [33]NAGASEKHAR A V,CáCERES C H,KONG C. 3D characterization of intermetallics in a high pressure die cast Mg alloy using focused ion beam tomography[J]. Materials Characterization,2010,61(11):1035-1042.
    [34]IWAI H,SHIKAZONO N,MATSUI T,et al. Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique[J]. Journal of Power Sources,2010,195(4):955-961.
    [35]MACSLEYNE J,UCHIC M D,SIMMONS J P,et al. Three-dimensional analysis of secondary precipitates in René-88 DT and UMF-20 superalloys[J]. Acta Materialia,2009,57(20):6251-6267.
    [36]吴园园,洪慧敏,张珂.聚焦离子束扫描电镜三维重构夹杂物的形态和分布[J].冶金分析,2016,36(4):6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700