用户名: 密码: 验证码:
巢湖水体二氧化碳浓度时空分布特征及其水-气交换通量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and spatial variation of carbon dioxide concentration and its exchange fluxes in Lake Chaohu
  • 作者:齐天赐 ; 肖启涛 ; 苗雨青 ; 段洪涛
  • 英文作者:QI Tianci;XIAO Qitao;MIAO Yuqing;DUAN Hongtao;Key Laboratory of Watershed Geographic Sciences,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Anhui Province Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin,College of Territorial Resources and Tourism,Anhui Normal University;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;
  • 关键词:巢湖 ; 二氧化碳浓度 ; 二氧化碳扩散通量 ; 时空变化 ; 影响因素
  • 英文关键词:Lake Chaohu;;carbon dioxide concentration;;carbon dioxide diffusion flux;;spatial-temporal variation;;influencing factors
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:中国科学院南京地理与湖泊研究所中国科学院流域地理学重点实验室;中国科学院大学;安徽师范大学地理与旅游学院江淮流域地表过程与区域响应安徽省重点实验室;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;
  • 出版日期:2019-05-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07603-001);; 国家自然科学基金项目(41671358);; 中国科学院南京地理与湖泊研究所交叉创新团队项目(NIGLAS2016TD01)联合资助
  • 语种:中文;
  • 页:FLKX201903015
  • 页数:13
  • CN:03
  • ISSN:32-1331/P
  • 分类号:160-172
摘要
为揭示巢湖水体二氧化碳浓度(c CO2)时空变化特征及其影响因素,2017年2、4、8和11月分别采集巢湖表层水样,测定水样的理化、生物学参数以及c CO2,并以此计算其水-气界面交换通量.结果表明:巢湖表层水体c CO2的变化范围为13.31~55.47μmol/L,年平均值为26.27μmol/L,在空间上呈现出西高东低的分布趋势;在季节上表现为暖季(夏季)低、冷季(春、秋和冬季)高的规律.巢湖表层水体c CO2与溶解性有机碳浓度呈显著正相关,与叶绿素a浓度呈显著负相关,说明有机质分解和光合作用在巢湖CO2生物化学循环过程中占重要作用;同时,南淝河等入湖河流污染严重,输入大量有机和无机碳,对西巢湖水体CO2贡献较大.总体上,巢湖CO2排放量相对较低,巢湖部分区域在冷季(2、11月)表现为CO2的汇.本研究对于明晰富营养化湖泊CO2排放特征以及准确估算全球内陆湖泊碳通量等都具有参考价值.
        In order to understand the temporal and spatial variation of carbon dioxide concentration( c CO2) and its influencing factors in the surface water of Lake Chaohu,the physicochemical parameters,biological parameters,and c CO2 of surface( 15-30 cm) water samples collected in February,April,August and November in 2017 from Lake Chaohu,representing different seasons,were measured. The surface water-air flux of CO2 was then calculated based on gradient method as well. The results showed that the c CO2 ranged from 13.31-55.47 μmol/L. The average annual c CO2 was 26.27 μmol/L. The c CO2 was higher in the west lake sublake zone than that in the central and east sub-lake zones. The surface water of Lake Chaohu had a lower c CO2 in the warm season( summer) than in cool and cold seasons( spring,autumn and winter). c CO2 was positively correlated with dissolved organic carbon( DOC) concentration and negatively correlated with chlorophyll-a concentration,suggesting that photosynthesis and decomposition of organic matter plays an important role in the biochemical cycle of CO2. Due to the serious pollution of inflowing rivers surrounding Lake Chaohu,DOC input from the watershed supplied substrates for CO2 production. Lake Chaohu was a relatively small source for atmosphere CO2 compared to others studies. Lake Chaohu shifted from a CO2 source to a sink in cold seasons.
引文
[1] Yvon-Durocher G,Hulatt CJ,Woodward G et al. Long-term warming amplifies shifts in the carbon cycle of experimental ponds. Nature Climate Change,2017,7(3):209-213. DOI:10.1038/NCLIMATE3229.
    [2] Butman D,Stackpoole S,Stets E et al. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proceedings of the National Academy of Sciences of the United States of America,2016,113(1):58-63. DOI:10.1073/pnas.1512651112.
    [3] Raymond PA,Hartmann J,Lauerwald R et al. Global carbon dioxide emissions from inland waters. Nature,2013,503(7476):355-359. DOI:10.1038/nature12760.
    [4] Bastviken D,Tranvik LJ,Downing JA et al. Freshwater methane emissions offset the continental carbon sink. Science,2011,331(6013):50-50. DOI:10.1126/science.1196808.
    [5] Holgerson MA,Raymond PA. Large contribution to inland water CO2and CH4emissions from very small ponds. Nature Geoscience,2016,9(3):222-U150. DOI:10.1038/NGEO2654.
    [6] Barros N,Cole JJ,Tranvik LJ et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience,2011,4(9):593-596. DOI:10.1038/ngeo1211.
    [7] Ciais P,Sabine C,Bala G et al. Carbon and other biogeochemical cycles. In:Climate Change 2013:The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Change. Cambridge:Cambridge University Press,2013:470-472.
    [8] Sobek S,Tranvik LJ,Cole JJ. Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochemical Cycles,2005,19(2):GB2003. DOI:10.1029/2004GB002264.
    [9] Liu ZH,Wolfgang D,Wang HJ. A potentially important CO2sink produced by the global water cycle. Chinese Science Bulletin,2007,53(20):2418-2422.[刘再华,Wolfgang Dreybrodt,王海静.一种由全球水循环产生的可能重要的CO2汇.科学通报,2007,52(20):2418-2422.]
    [10] Marce R,Obrador B,Morgui JA et al. Carbonate weathering as a driver of CO2supersaturation in lakes. Nature Geoscience,2015,8(2):107-111. DOI:10.1038/NGEO2341.
    [11] Weyhenmeyer GA,Kosten S,Wallin MB et al. Significant fraction of CO2emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nature Geoscience,2015,8(12):933-936. DOI:10.1038/NGEO2582.
    [12] Xing YP,Xie P,Yang H et al. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmospheric Environment,2005,39(30):5532-5540. DOI:10.1016/j.atmosenv.2005.06.010.
    [13] Rudorff CM,Melack JM,Macintyre S et al. Seasonal and spatial variability of CO2emission from a large floodplain lake in the lower Amazon. Journal of Geophysical Research:Biogeosciences,2011,116:G04007. DOI:10.1029/2011JG001699.
    [14] Shao CL,Chen JQ,Stepien CA et al. Diurnal to annual changes in latent,sensible heat,and CO2fluxes over a Laurentian Great Lake:A case study in Western Lake Erie. Journal of Geophysical Research Biogeosciences,2015,120(8):1587-1604. DOI:10.1002/2015JG003025.
    [15] Sinha E,Michalak AM,Balaji V. Eutrophication will increase during the 21st century as a result of precipitation changes.Science,2017,357(6349):405-408. DOI:10.1126/science.aan2409.
    [16] Zhang M,Kong FX. The process,spatial and temporal distributions and mitigation strategies of the eutrophication of Lake Chaohu(1984-2013). J Lake Sci,2015,27(5):791-798. DOI:10.18307/2015.0505.[张民,孔繁翔.巢湖富营养化的历程、空间分布与治理策略(1984-2013年).湖泊科学,2015,27(5):791-798.]
    [17] Qin BQ,Wang XD,Tang XM et al. Drinking water crisis caused by eutrophication and cyanobacterial bloom in Lake Taihu:cause and measure. Advances in Earth Science,2007,22(9):896-906.[秦伯强,王小冬,汤祥明等.太湖富营养化与蓝藻水华引起的饮用水危机———原因与对策.地球科学进展,2007,22(9):896-906.]
    [18] Duan HT,Tao M,Loiselle SA et al. MODIS observations of cyanobacterial risks in a eutrophic lake:Implications for longterm safety evaluation in drinking-water source. Water Research,2017,122:455-470. DOI:10.1016/j.watres.2017.06.022.
    [19] Chen YG,Li XH,Hu ZX et al. Carbon dioxide flux on the water-air interface of the eight lakes in China in winter. Ecology and Environment,2006,15(4):665-669.[陈永根,李香华,胡志新等.中国八大湖泊冬季水-气界面CO2通量.生态环境学报,2006,15(4):665-669.]
    [20] Wang SM,Dou HS eds. Chinese lakes. Beijing:Science Press,1998:230.[王苏民,窦鸿身.中国湖泊志.北京:科学出版社,1998:230.]
    [21] Yang LB,Lei K,Meng W et al. Temporal and spatial changes in nutrients and chlorophyll-αin a shallow lake,Lake Chaohu,China:An 11-year investigation. Journal of Environmental Sciences,2013,25(6):1117-1123. DOI:10. 1016/S1001-0742(12)60171-5.
    [22] Wang SH,Jiang X,Jin XC. Classification and pollution characteristic analysis for inflow rivers of Chaohu Lake. Environmental Science,2011,32(10):2834-2839. DOI:10.13227/j.hjkx.2011.10.024.[王书航,姜霞,金相灿.巢湖入湖河流分类及污染特征分析.环境科学,2011,32(10):2834-2839.]
    [23] Liu S,Kong FX,Cai YF et al. Nitrogen stable isotope study on nitrate nitrogen pollution of four inflowing rivers of Lake Chaohu. J Lake Sci,2012,24(6):952-956. DOI:10.18307/2012.0619.[刘姝,孔繁翔,蔡元锋等.巢湖四条入湖河流硝态氮污染来源的氮稳定同位素解析.湖泊科学,2012,24(6):952-956.]
    [24] Yu HB,Xi BD,Jiang JY et al. Environmental heterogeneity analysis,assessment of trophic state and source identification in Chaohu Lake,China. Environmental Science&Pollution Research,2011,18(8):1333-1342. DOI:10.1007/s11356-011-0490-8.
    [25] Zhang YC,Ma RH,Zhang M et al. Fourteen-year record(2000-2013)of the spatial and temporal dynamics of floating algae blooms in Lake Chaohu,observed from time series of MODIS images. Remote Sensing,2015,7(8):10523-10542.DOI:10.3390/rs70810523.
    [26] Lundin EJ,Giesler R,Persson A et al. Integrating carbon emissions from lakes and streams in a subarctic catchment. Journal of Geophysical Research Biogeosciences,2013,118(3):1200-1207. DOI:10.1002/jgrg.20092.
    [27] Editorial board of"Water and wastewater monitoring and analysis method",Ministry of Environmental Protection of the People's Republic of China ed. Monitoring and analysis methods of water and wastewater:fourth edition. Beijing:China Environmental Science Press,2002.[国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法:第4版.北京:中国环境科学出版社,2002.]
    [28] Goldenfum JA ed. GHGmeasurement guidelines for freshwater reservoirs. London:The International Hydropower Association(IHA),2010:73-78.
    [29] Cole JJ,Caraco NF. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography,1998,43(4):647-656. DOI:10.4319/lo.1998.43.4.0647.
    [30] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited. Limnology and OceanographyMethods,2014,12:351-362. DOI:10.4319/lom.2014.12.351.
    [31] Crusius J,Wanninkhof R. Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography,2003,48(3):1010-1017. DOI:10.4319/lo.2003.48.3.1010.
    [32] Deng DG,Xie P,Zhou Q et al. Studies on temporal and spatial variations of phytoplankton in Lake Chaohu. Journal of Integrative Plant Biology,2007,49(4):409-418. DOI:10.1111/j.1672-9072.2006.00390.x.
    [33] Li J,Cui K,Lu WX et al. Community dynamics of spring-summer plankton in Lake Chaohu. Acta Hydrobiologica Sinica,2015,(1):185-192. DOI:10.7541/2015.23.[李静,崔凯,卢文轩等.春季和夏季巢湖浮游生物群落组成及其动态分析.水生生物学报,2015,(1):185-192.]
    [34] Natchimuthu S,Sundgren I,Galfalk M et al. Spatiotemporal variability of lake p CO2and CO2fluxes in a hemiboreal catchment. Journal of Geophysical Research Biogeosciences,2017,122(1):30-49. DOI:10.1002/2016JG003449.
    [35] Guo JS,Jiang T,Li Z et al. Analysis on partial pressure of CO2and influencing factors during spring phytoplankton bloom in the backwater area of Xiaojiang River in Three Gorges Reservoir. Advances in Water Science,2011,22(6):829-838.[郭劲松,蒋滔,李哲等.三峡水库澎溪河春季水华期p(CO2)及影响因素分析.水科学进展,2011,22(6):829-838.]
    [36] Zhou M,Ye LF,Zhang C et al. Partial pressure of carbon dioxide in the Xinfengjiang Reservoir of Guangdong Province and its influencing factors. J Lake Sci,2018,30(3):770-781. DOI:10.18307/2018.0319.[周梅,叶丽菲,张超等.广东新丰江水库表层水体CO2分压及其影响因素.湖泊科学,2018,30(3):770-781.]
    [37] Krasakopoulou E,Rapsomanikis S,Papadopoulos A et al. Partial pressure and air-sea CO2flux in the Aegean Sea during February 2006. Continental Shelf Research,2009,29(11):1477-1488. DOI:10.1016/j.csr.2009.03.015.
    [38] Cory RM,Ward CP,Crump BC et al. Sunlight controls water column processing of carbon in arctic fresh waters. Science,2014,345(6199):925-928. DOI:10.1126/science.1253119.
    [39] Linnaluoma J. Factors controlling carbon gas fluxes in boreal lakes[Dissertation]. Finland:University of Helsinki,Lahti,2012.
    [40] Zhang YL,Yang LY,Qin BQ et al. Spatial distribution of COD and the correlations with other parameters in the northern region of Lake Taihu. Environmental Science,2008,29(6):1457-1462. DOI:10.13227/j.hjkx.2008.06.006.[张运林,杨龙元,秦伯强等.太湖北部湖区COD浓度空间分布及与其它要素的相关性研究.环境科学,2008,29(6):1457-1462.]
    [41] Ye LL,Wu XD,Liu B et al. Dynamics and sources of dissolved organic carbon during phytoplankton bloom in hypereutrophic Lake Taihu(China). Limnologica,2015,54:5-13. DOI:10.1016/j.limno.2015.05.003.
    [42] Xi SS. The distribution,environmental impacts and preventation contermeasures of nitrogen and phosphate in the Chaohu Lake[Dissertation]. Hefei:University of Science and Technology of China,2016.[奚姗姗.巢湖水体氮、磷结构特征、环境效应与防空对策研究[学位论文].合肥:中国科学技术大学,2016.]
    [43] Balmer MB,Downing JA. Carbon dioxide concentrations in eutrophic lakes:undersaturation implies atmospheric uptake.Inland Waters,2011,(1):125-132. DOI:10.5268/IW-1.2.366.
    [44] Zhang YL,Zhou YQ,Shi K et al. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients:Implications for monitoring and assessing lake eutrophication. Water Research,2017,131:255.DOI:10.1016/j.watres.2017.12.051.
    [45] Weyhenmeyer GA,Kosten S,Wallin MB et al. Significant fraction of CO2emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nature Geoscience,2015,8:933-936. DOI:10.1038/ngeo2582.
    [46] Maberly SC,Barker PA,Stott AW et al. Catchment productivity controls CO2emissions from lakes. Nature Climate Change,2013,3:391-394. DOI:10.1038/nclimate1748.
    [47] Li SY,Bush RT,Ward NJ et al. Air-water CO2outgassing in the Lower Lakes(Alexandrina and Albert,Australia)following a millennium drought. Science of the Total Environment,2016,542(Pt A):453-468. DOI:10.1016/j.scitotenv.2015.10.070.
    [48] Xiao QT. Study on green house gases(CO2,CH4,and N2O)fluxes of water-air interface in Lake Taihu[Dissertation].Nanjing:Nanjing University of Information Science and Technology,2014.[肖启涛.太湖水-气界面温室气体(CO2,CH4,N2O)通量研究[学位论文].南京:南京信息工程大学,2014.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700