用户名: 密码: 验证码:
金属氧化物多层膜晶体硅太阳电池的背场研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:RESEARCHON BACK SURFACE FIELD OF SILICON BASED SOLAR CELLS WITH MULTILAYER OXIDE EMITTER
  • 作者:林文杰 ; 吴伟梁 ; 包杰 ; 刘宗涛 ; 梁宗存 ; 沈辉
  • 英文作者:Lin Wenjie;Wu Weiliang;Bao Jie;Liu Zongtao;Liang Zongcun;ShenHui;Institute for Solar Energy Systems,Sun Yat-Sen University;State Key Laboratory of Optoelectronic Materials and Technologies,Sun Yat-Sen University;Shunde-SYSU Institute for Solar Energy;
  • 关键词:晶体硅太阳电池 ; 异质结 ; 金属氧化物 ; 多层膜 ; 背场 ; 无掺杂 ; 背接触
  • 英文关键词:silicon solar cells;;heterojunction;;metal oxide;;multilayers;;back surface field;;dopant-free;;back contact
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:中山大学太阳能系统研究所;广东省光伏技术重点实验室;顺德中山大学太阳能系统研究所;
  • 出版日期:2019-01-28
  • 出版单位:太阳能学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(61774173)
  • 语种:中文;
  • 页:TYLX201901010
  • 页数:6
  • CN:01
  • ISSN:11-2082/TK
  • 分类号:68-73
摘要
在n-Si与金属电极之间插入电子选择性材料Ca和Cs_2CO_3、LiF_x,可有效降低接触电阻和界面复合,该文研究Ca和Cs_2CO_3、LiF_x作为背场在氧化钨金属多层膜(WAW)/n-Si太阳电池中对电池性能和稳定性的影响。3种电子选择性材料中,2 nm的LiF_x对电池转换效率的提升最高,稳定性最好。对WAW/n-Si/LiF_x太阳电池R_s的各部分组成进行提取和分析,表明LiF_x/n-Si的接触电阻和LiF_x/Ag接触电阻仅占总串联电阻的0.2%,背场工艺得到最佳的优化。将LiF_x做为背场应用于氧化钒金属多层膜背接触晶体硅(MLBC)太阳电池中,达到19.02%的转换效率,而且用环氧树脂封装的MLBC太阳电池放置在空气中表现出极好的稳定性。
        In this work,the back surface field of the WAW/n-Si solar cells was optimized by introducing electronselective interfacial layers Ca,Cs_2 CO_3 and LiF_xto isolate n-Si from metal electrode. The interfacial layers can not only reduce the Schottky barrier formed by n-Si/Ag contact dramatically,but also passivate the hetero-contact,resulting in negligible contact resistivity and low surface recombination velocity. By incorporating 2 nm LiF_x as the back surfacefield,the WAW/n-Si solar cells demonstrated the best performance and stability. The components of the WAW/n-Si/LiF_x solar cell were extracted and analyzed,indicating that the contact resistance of LiF_x/n-Si and LiF_x/Ag comprised only 0.2% of the total series resistance and the back surface field was optimized. Applying the optimized LiFxas the BSF,an efficiency of 19.02% was achieved for the MLBC solar cell. Furthermore,the MLBC solar cells were encapsulated by epoxy resin and showed high stability when stored in ambient.
引文
[1] Bullock J,Hettick M,Geissbühler J,et al. Efficientsilicon solar cells with dopant-free asymmetricheterocontacts[J]. Nature Energy, 2016, 1(3):15031.
    [2] Bao Jie,Wu Weiliang,Liu Zongtao,et al. Siliconbased solar cells using a multilayer oxide as emitter[J].AIP Advances,2016,6(8):085304.
    [3] Wu Wweiliang,Lin Wenjie,Bao Jie,et al. Dopant-freemultilayer back contact silicon solar cells employingV2Ox/metal/V2Oxas an emitter[J]. RSC Advances,2017,7(38):23851—23858.
    [4] Li Shenhao, Yao Zhirong, Zhou Jixiang, et al.Fabrication and characterization of WO3thin films onsilicon surface by thermal evaporation[J]. MaterialsLetters,2017,195:213—216.
    [5] Almora O, Gerling L G, Voz C, et al. Superiorperformance of V2O5as hole selective contact over othertransition metal oxides in silicon heterojunction solarcells[J]. Solar Energy Materials and Solar Cells,2017,168:221—226.
    [6] Wu Weiliang,Bao Jie,Jia Xuguang,et al. Dopant-freeback contact silicon heterojunction solar cells employingtransition metal oxide emitters[J]. Physica Status Solidi(RRL)-Rapid Research Letters,2016,10(9):662—667.
    [7] Geissbühler J,Werner J,de Nicolas S M,et al. 22.5%efficient silicon heterojunction solar cell withmolybdenum oxide hole collector[J]. Applied PhysicsLetters,2015,107(8):081601.
    [8] Gerling L G,Voz C,Alcubilla R,et al. Origin ofpassivation in hole-selective transition metal oxides forcrystalline silicon heterojunction solar cells[J]. Journalof Materials Research,2016,32(2):260—268.
    [9] MasmitjàG,Gerling L G,Ortega P,et al. V2Ox-basedhole-selective contacts for c-Si interdigitated back-contacted solar cells[J]. Journal of Materials ChemistryA,2017,5(19):9182—9189.
    [10] Bullock J,Zheng P,Jeangros Q,et al. Lithium fluoridebased electron contacts for high efficiency n-typecrystalline silicon solar cells[J]. Advanced EnergyMaterials,2016,6(14):1600241.
    [11] Wan Yimao, Samundsett C, Bullock J, et al.Conductive and stable magnesium oxide electron-selective contacts for efficient silicon solar cells[J].Advanced Energy Materials,2017,7(5):1601863.
    [12] Schroder D K,Meier D L. Solar cell contact resistance—A review[J]. IEEE Transactions on Electron Devices,1984,31(5):637—647.
    [13] Allen T G,Bullock J,Zheng P,et al. Calcium contactsto n-type crystalline silicon solar cells[J]. Progress inPhotovoltaics:Research and Applications,2017,25(7):636—644.
    [14] Wan Yimao,Samundsett C,Yan D,et al. A magnesium/amorphous silicon passivating contact for n-typecrystalline silicon solar cells[J]. Applied PhysicsLetters,2016,109(11):113901.
    [15] Zhang Yunfang,Cui Wei,Zhu Yawen,et al. Highefficiency hybrid PEDOT:PSS/nanostructured siliconSchottky junction solar cells by doping-free rear contact[J]. Energy&Environmental Science,2015,8(1):297—302.
    [16] Wan Yimao, Samundsett C, Bullock J, et al.Magnesium fluoride electron-selective contacts forcrystalline silicon solar cells[J]. ACS AppliedMaterials&Interfaces,2016,8(23):14671—14677.
    [17] Morato A,Vermang B,Goverde H,et al. Electricalcharacterization of ALD Al2O3-HfO2and PECVD Al2O3passivation layers for p-type CZ-Silicon PERC solar cells[A]. proceedings of the Photovoltaic SpecialistsConference[C],Austin,TX,USA,2012.
    [18] Yang Xinbo,Bi Qunyu,Ali H,et al. High-performanceTiO2-based electron-selective contacts for crystallinesilicon solar cells[J]. Advanced Materials,2016,28(28):5891.
    [19] Hsu Feng-Hao,Wang Na-Fu,Tsai Yu-Zeu,et al.Enhanced carrier collection in p-Ni1-xO:Li/n-Siheterojunction solar cells using LiF/Al electrodes[J].Thin Solid Films,2014,573:159—163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700