用户名: 密码: 验证码:
锰掺杂纳米氧化锌/石墨烯复合光催化剂的制备
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Mn-doped Nano-ZnO/Graphene Compound Photocatalyst
  • 作者:吴本泽 ; 李锦 ; 刘卫梦 ; 李强
  • 英文作者:WU Benze;LI Jin;LIU Weimeng;LI Qiang;School of Physical Science and Technology,Xinjiang University;
  • 关键词:纳米氧化锌 ; 锰掺杂 ; 石墨烯 ; 复合光催化剂 ; 光催化性能
  • 英文关键词:nano-ZnO;;manganese doping;;graphene;;compound photocatalyst;;photocatalytic performance
  • 中文刊名:XJDZ
  • 英文刊名:Journal of Xinjiang University(Natural Science Edition)
  • 机构:新疆大学物理科学与技术学院;
  • 出版日期:2019-05-06
  • 出版单位:新疆大学学报(自然科学版)
  • 年:2019
  • 期:v.36;No.154
  • 基金:新疆维吾尔自治区自然科学基金项目(2017D01C022)
  • 语种:中文;
  • 页:XJDZ201902006
  • 页数:7
  • CN:02
  • ISSN:65-1094/N
  • 分类号:31-37
摘要
为了提高氧化锌的光催化性能、净化水体有机污染,通过共沉淀、退火和光还原处理成功制备了锰掺杂浓度为4 at%的纳米氧化锌与石墨烯复合光催化剂,并采用扫描电镜、X-射线衍射仪、X-射线光电子能谱仪和紫外可见分光光度计进行表征和光催化活性测试.表征结果显示锰掺杂纳米氧化锌成功附着在石墨烯表面;掺杂后的锰离子以正三价形式存在于纳米氧化锌晶格中,同时增大了纳米氧化锌的带隙.光催化活性测试结果表明所合成的样品与纯氧化锌和纳米氧化锌/石墨烯复合材料相比具有较高的光催化性能,其光催化效率达到100%.
        In order to improve the photocatalytic performance of zinc oxide and purify organic pollution in water,nano-ZnO and graphene compound photocatalyst with manganese doping concentration of 4 at%were successfully prepared by co-precipitation,annealing and photoreduction.The as-synthesized sample was characterized by scanning electron microscopy,X-ray diffraction,X-ray photoelectron spectroscopy and ultraviolet-visible spectrophotometer.The results show that manganese doped nano-zinc oxide successfully adheres to the surface of graphene,and the doped manganese ions exist in the form of positive trivalent in the lattice of nano-zinc oxide,while increasing the band gap of nano-zinc oxide.The results of photocatalytic activity test show that the as-synthesized samples have higher photocatalytic activity than pure zinc oxide and nano-zinc oxide/graphene composites,and its photocatalytic efficiency reaches 100%.
引文
[1]Wan X J,Huang Y,Chen Y S.Focusing on Energy and Optoelectronic Applications:A Journey for Graphene and Graphene Oxide at Large Scale[J].Acc Chem Res,2012,45(4):598-607.
    [2]Mandal S K,Dutta K,Pal S,et al.Engineering of ZnO/rGO nanocomposite photocatalyst towards rapid degradation of toxic dyes[J].Mater Chem Phys,2019,456-465.
    [3]Kang J W,Choi Y S,Kim B H,et al.Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode[J].Appl Phys Lett,2014,104(5):051120-051124.
    [4]Zhao G,Li X,Huang M,et al.The physics and chemistry of graphene-on-surfaces[J].Chem Soc Rev,2017,46(15):4417-4449.
    [5]Zhang S,Zhang Y,Huang S,et al.First-Principles Study of Field Emission Properties of Graphene-ZnO Nanocomposite[J].The Journal of Physical Chemistry C,2010,114(45):19284-19288.
    [6]Li B J,Cao H Q.ZnO@graphene composite with enhanced performance for the removal of dye from water[J].J Mater Chem,2011,21(10):3346-3349.
    [7]Govindhan P,Pragathiswaran C,Chinnadurai M.Facile synthesis of GO/ZnO-Ag nanocomposite and evaluation of rhodamine B dye under sun light[J].Journal of Materials Science:Materials in Electronics,2016,28(1):354-362.
    [8]Abdolhosseinzadeh S,Asgharzadeh H,Sadighikia S,et al.UV-assisted synthesis of reduced graphene oxide-ZnO nanorod composites immobilized on Zn foil with enhanced photocatalytic performance[J].Res Chem Intermed,2016,45(5):4479-4496.
    [9]Zhang D,Dai F,Zhang P,et al.The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane[J].Materials Science and Engineering:C,2019,96:684-692.
    [10]Pauport T,Lupan O,Zhang J,et al.Low-Temperature Preparation of Ag-Doped ZnO Nanowire Arrays,DFT Study,Application to Light-Emitting Diode[J].ACS Applied Materials and Interfaces,2015,7(22):11871-11880.
    [11]Chen K J,Hung F Y,Chang S J,et al.optical and electrical properties of In-doped ZnO thin films prepared by Sol-Gel method[J].Microstructures,2009,255:6308-6312.
    [12]Phan T L,Yu S C.Optical and Magnetic Properties of Zn1-xMnxO Nanorods Grown by Chemical Vapor Deposition[J].The Journal of Physical Chemistry C,2013,117(12):6443-6453.
    [13]Achouri F,Corbel S,Balan,L.,et al.Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis[J].Materials&Design,2016,101:309-316.
    [14]Ferrari A C,Robertson,J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Physical Review B,2000,61(20):14095-14107.
    [15]Peng L,Xu Z,Liu Z,et al.An iron-based green approach to 1-h production of single-layer graphene oxide[J].Nature Communications,2015,6:1-9.
    [16]López-Díaz D,López Holgado M,García-Fierro,J.L.,et al.Evolution of the Raman Spectrum with the Chemical Composition of Graphene Oxide[J].The Journal of Physical Chemistry C,2017,121(37):20489-20497.
    [17]Mehta J S,Faucett A C,Sharma A,et al.How Reliable Are Raman Spectroscopy Measurements of Graphene Oxide?[J].The Journal of Physical Chemistry C,2017,121(30):16584-16591.
    [18]Wu Z,Wang L.Graphene oxide(GO)doping hexagonal flower-like ZnO as potential enhancer of photocatalytic ability[J].Mater Lett,2019,234:287-290.
    [19]Guo Y,Cao X,Lan X,et al.Solution-Based Doping of Manganese into Colloidal ZnO Nanorods[J].The Journal of Physical Chemistry C,2008,112(24):8832-8838.
    [20]Pei S,Wei Q,Huang K,et al.Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation[J].Nature Communications,2018,9(1):1-9.
    [21]Pei S F,Cheng H M.The reduction of graphene oxide[J].Carbon,2012,50(9):3210-3228.
    [22]Singh A K,Thool G S,Bangal P R,et al.Low Temperature Mn Doped ZnO Nanorod Array:Synthesis and Its Photoluminescence Behavior[J].Ind Eng Chem Res,2014,53(22):9383-9390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700