用户名: 密码: 验证码:
高导热鳞片石墨/2024Al组织与性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Properties of High Thermal Conductivity Graphite Flake/2024 Aluminum
  • 作者:秦俊杰 ; 郭宏 ; 张习敏
  • 英文作者:Qin Junjie;Guo Hong;Zhang Ximin;National Engineering Research Center for Nonferrous Metals Composites,General Research Institute of Nonferrous Metals;
  • 关键词:鳞片石墨 ; 复合材料 ; 镀钛 ; 热导率 ; 抗弯强度
  • 英文关键词:graphite flake;;composite;;Ti-coated;;thermal conductivity;;bending strength
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:北京有色金属研究总院国家有色金属复合材料工程技术研究中心;
  • 出版日期:2017-12-15 14:48
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.279
  • 基金:科技部国家重点基础研究发展计划项目(2012CB619606)资助
  • 语种:中文;
  • 页:ZXJS201906007
  • 页数:9
  • CN:06
  • ISSN:11-2111/TF
  • 分类号:46-54
摘要
以2024铝合金为基体、平均粒径100μm的高导热鳞片石墨为增强体,并对鳞片石墨表面镀钛,通过放电等离子烧结(spark plasma sintering, SPS),制备石墨体积分数为60%的高导热鳞片石墨/2024Al复合材料。烧结温度是540℃,烧结压力是50 MPa,烧结时间5 min。通过金相显微镜(OM)、 X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对未镀钛和镀钛鳞片石墨/2024Al复合材料的显微组织和成分进行了分析和表征,结果显示,复合材料中都没有有害相Al_4C_3的生成,镀钛鳞片石墨/2024Al复合材料具有更好的界面结合。测试其热导率、热膨胀系数以及抗弯强度,未镀钛和镀钛鳞片石墨/2024Al复合材料在沿鳞片石墨片层方向的热导率分别为398和368 W·m~(-1)·K~(-1),变化不大;垂直于鳞片石墨片层方向的热导率分别为35和56 W·m~(-1)·K~(-1),有较大提高。镀钛后,复合材料的热膨胀系数降低,抗弯强度为96 MPa,和未镀钛鳞片石墨/2024Al的抗弯强度37 MPa相比,有较大提高。对鳞片石墨表面镀钛,能够改善碳与铝的界面结合,提高鳞片石墨/2024Al复合材料的热物理与力学性能。
        The high thermal conductivity graphite flake/2024 aluminum composites was prepared by spark plasma sintering(SPS) with 2024 aluminum alloy as substrate and high thermal conductivity graphite flake as reinforcement, with sintering temperature of 540 ℃, sintering pressure of 50 MPa, and sintering time of 5 min. The microstructures and compositions of non-titanium and titanium-coated graphite flake/2024 Al composites were investigated by optical microscope(OM), X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The results showed that there was no harmful phase of Al_4C_3 in the composites, and the Ti-coated graphite flake/2024 Al composite had better interface. The thermal conductivity, thermal expansion coefficient and bending strength were tested. The thermal conductivity of non-titanium-coated and titanium-coated graphite flake/2024 Al composites in the direction of graphite flake sheet was 398 and 368 W·m~(-1)·K~(-1), respectively. The thermal conductivity in the direction perpendicular to the flake graphite sheet was 35 and 56 W·m~(-1)·K~(-1), which was greatly improved. After the titanium coating, the thermal expansion coefficient of the composite material was reduced and the bending strength was 96 MPa, which was greatly improved compared with the bending strength of the non-titanium scale graphite flake/2024 Al composite which was 37 MPa. Titanium coating on the surface of graphite flake could improve the interface between carbon and aluminum and improve the thermal and mechanical properties of graphite flake/2024 Al composites.
引文
[1] Lu D,Wong C P.Materials for Advanced Packaging [M].Beijing:China Machine Press,2012.35.(Lu D,Wong C P.先进封装材料 [M].北京:机械工业出版社,2012.35.)
    [2] Li Z Q,Tan Z Q,Fan G L,Zhang D.Progress of metal matrix composites for efficient thermal management applications [J].Materials China,2013,32(7):431.(李志强,谭占秋,范根莲,张荻.高效热管理用金属基复合材料研究进展 [J].中国材料进展,2013,32(7):431.)
    [3] Markstein Howard W.A wide choice of materials for MCMs [J].Electronic Packaging & Production,1997,37(3):34.
    [4] Liu Y Z Z.Preparation of high thermal-conductivity flake graphite/Al by spark plasma sintering [J].Chinese Journal of Rare Metals,2018,42(3):259.(刘依卓子.放电等离子烧结法制备高导热片状石墨/铝复合材料 [J].稀有金属,2018,42(3):259.)
    [5] Liu Q.Research of Preparation and Thermal Properties of Discontinuous Graphite/Copper Composites [D].Beijing:University of Science and Technology Beijing,2016.88.(刘骞.非连续石墨/铜复合材料的制备与热性能研究 [D].北京:北京科技大学,2016.88.)
    [6] Rajmohan T,Ranganathan S,Suryakumari T S A.Experimental study on fabrication of hybrid (Al+TiO2+Gr) metal matrix composites [J].International Journal of Advanced Engineering Applications,2014,7(2):11.
    [7] Pan H,Fan G L,Tan Z Q,Li Z Q,Zhang D.Preparation technology and development trend of nanometer Al2O3 reinforced aluminum matrix composites [J].Materials Review,2015,29(1):36.(潘浩,范根莲,谭占秋,李志强,张荻.纳米Al2O3增强铝基复合材料的制备技术和发展方向 [J].材料导报,2015,29(1):36.)
    [8] Kurita H,Miyazaki T,Kawasaki A,Lu Y,Silvain J F.Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing [J].Composites Part A:Applied Science and Manufacturing,2015,73:125.
    [9] Prieto R,Molina J M,Narciso J,Louis E.Fabrication and properties of graphite flakes/metal composites for thermal management applications [J].Scripta Materialia,2008,59(1):11.
    [10] Chang C J,Chang C H,Hwang J D,Kuo C T.Thermal characterization of high thermal conductive graphites reinforced aluminum matrix composites [A].Microsystems,Packaging,Assembly and Circuits Technology Conference [C].2009.461.
    [11] Zhou C,Chen Z,Wang H W.High thermal conductivity diamond particle hybrid reinforced graphite aluminum composites and its preparation process [P].Chinese Patent:CN201310313695.4,2013.(周聪,陈哲,王浩伟.高导热金刚石颗粒混杂增强石墨铝复合材料及其制备工艺:中国,CN201310313695.4 [P].2013.).
    [12] Wu G H,Li W J,Chen G Q,Jiang L T,Zhang Q,Kang P C,Gou H S.A directional high thermal conductivity low expansion graphite aluminum composite material and its preparation method [P].Chinese Patent:CN201310022594.1,2013.(武高辉,李文君,陈国钦,姜龙涛,张强,康鹏超,苟华松.一种定向高导热低膨胀石墨铝复合材料及其制备方法:中国,CN201310022594.1 [P].2013.).
    [13] Chen J K,Huang I S.Thermal properties of aluminum-graphite composites by power metallurgy [J].Composites Part B:Engineering,2013,44(1):698.
    [14] Klemens P G.Theory of the α-plane thermal conductivity of graphite [J].Journal of Wide Bandgap Materials,2000,7(4):332.
    [15] Chen J H.Study on preparation and Properties of Flake graphite Reinforced Copper Matrix Composites [D].Beijing:University of Science and Technology Beijing,2016.62.(陈建豪.鳞片石墨增强铜基复合材料的制备与性能研究 [D].北京:北京科技大学,2016.62.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700