用户名: 密码: 验证码:
高炉炉缸凝铁层导热系数测定及传热模型修正
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measurement of thermal conductivity for iron skull of blast furnace hearth and modification of heat transfer model
  • 作者:温旭 ; 姜华 ; 曹进 ; 王炜 ; 徐润生 ; 余仲达
  • 英文作者:WEN Xu;JIANG Hua;CAO Jin;WANG Wei;XU Run-sheng;YU Zhong-da;State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University;Equipment Division, Baoshan Iron and Steel Co., Ltd.;Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology;
  • 关键词:高炉炉缸 ; 凝铁层 ; 导热系数 ; 传热模型 ; 气隙
  • 英文关键词:blast furnace hearth;;iron skull;;thermal conductivity;;heat transfer model;;air gap
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:上海大学材料科学与工程学院省部共建高品质特殊钢冶金与制备国家重点实验室;宝山钢铁股份有限公司设备部;武汉科技大学湖北省冶金二次资源工程技术研究中心;
  • 出版日期:2019-04-15
  • 出版单位:钢铁研究学报
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金资助项目(51474164,51704216);; 国家自然科学基金委员会-中国宝武钢铁集团有限公司钢铁联合研究基金资助项目(U1760101)
  • 语种:中文;
  • 页:IRON201904001
  • 页数:7
  • CN:04
  • ISSN:11-2133/TF
  • 分类号:15-21
摘要
高炉炉缸内衬表面形成稳定的凝铁层将延长高炉寿命。采用自制的凝铁层模拟实验装置,在中温高压条件下利用锡与焦炭制备凝铁层模拟样品;通过三维数码显微镜观察统计不同凝铁层模拟样品对应的金属与焦炭的面积比,采用瞬态平面热源法测定导热系数,探究其对凝铁层导热系数的影响。结果表明,凝铁层模拟样品(凝锡层)的导热系数范围是23.58~40.39 W/(m·K);凝铁层样品的导热系数范围为28.05~48.19 W/(m·K);还原凝铁层真实导热系数后,可以确定高炉炉缸区域传热模型中的气隙厚度为0.5~1.0 mm。
        A stable iron skull on the surface of blast furnace hearth lining can prolong the life of the blast furnace. A simulated experimental device of a self-made iron skull was used to prepare the simulated samples of the solidified iron layer with tin and coke under the medium temperature and high pressure conditions. The area ratio of the metal to coke was observed using the three-dimensional digital microscope. The thermal conductivity was measured by the transient plane heat source method to study the influence on thermal conductivity. The results show that the thermal conductivity of the tin layer is 23.58-40.39 W/(m·K), and the thermal conductivity of the iron-skull sample is 28.05-48.19 W/(m·K). The air gap thickness of the furnace hearth is 0.5-1.0 mm after reducing the real thermal conductivity of the skull.
引文
[1] 朱仁良,王士彬.提高大型高炉炉缸寿命的探讨[J].炼铁,2011,30(1):1.(Zhu R L,Wang S B.Study on improvement of large size blast hearth[J].Ironmaking,2011,30(1):1.)
    [2] 毛庆武,张福明,姚轼,等.首钢高炉高效长寿技术设计与应用实践[J].炼铁,2011,30(5):1.(Mao Q W,Zhang F M,Yao S,et al.Design and application of high efficiency and long campaign technology in Shougang[J].Ironmaking,2011,30(5):1.)
    [3] Akihiko S,Hitoshi N,Nariyuki Y,et al.Investigation of blast-furnace hearth sidewall erosion by core sample analysis and consideration of campaign operation[J].ISIJ International,2003,43(3):321.
    [4] 宋木森,吴捐献,孙丽霞.武钢高炉破损调查分析[J].钢铁,1985,20(6):5.(Song M S,Wu J X,Sun L X.Investigation on the wear of a blast furnace lining in Wuhan Iron and Steel Co.[J].Iron and Steel,1985,20(6):5.)
    [5] Torrkulla J,Saxen H.Model of the state of the blast furnace hearth[J].Transactions of the Iron and Steel Institute of Japan,2000,40(5):438.
    [6] Br?nnbacka J,Saxén H.Model for fast computation of blast furnace hearth erosion and buildup profiles[J].Industrial and Engineering Chemistry Research,2008,47(20):7793.
    [7] Swartling M,Sundelin B,Tilliander A,et al.Heat transfer modelling of a blast furnace hearth[J].Steel Research International,2010,81(3):186.
    [8] Zagaria M,Dimastromatteo V,Colla V.Monitoring erosion and skull profile in blast furnace hearth[J].Ironmaking and Steelmaking,2010,37(3):229.
    [9] Duarte R M,Ruizbustinza I,Carrascal D,et al.Monitoring and control of hearth refractory wear to improve blast furnace operation[J].Ironmaking and Steelmaking,2013,40(5):350.
    [10] Zhao Y,Fu D,Lherbier L W,et al.Investigation of skull formation in a blast furnace hearth[J].Steel Research International,2014,85(5):891.
    [11] 朱仁良,夏欣鹏,李亚伟,等.高炉炉缸用碳砖抗铁水侵蚀的测定标准探讨[C]//第十四届全国大高炉炼铁学术年会.嘉峪关:中国金属学会,2013:239.(Zhu R L,Xia X P,Li Y W,et al.Discussion on determination standard of resistance to hot metal erosion of carbon brick used in blast furnace hearth[C]//The Fourteenth Annual National Academy of Blast Furnace Ironmaking.Jiayuguan:The Chinese Society for Metals,2013:239.)
    [12] 张代林.利用图像分析法测定焦炭气孔结构的研究[J].燃料与化工,2003(4):1.(Zhang D L.Study on determination of coke pore structure by image analysing[J].Fuel and Chemical Processes,2003(4):1.)
    [13] Jiao K X,Zhang J L,Liu Z J,et al.Analysis of blast furnace hearth sidewall erosion and protective layer formation[J].ISIJ International,2016,56(11):1956.
    [14] Yesilata B,Turgut P,Isiker Y.Thermal performance measurements of building panels by a new transient technique[J].Exergy and Environment Symposium,2007,23(4):32.
    [15] Log T,Gustafsson S E.Transient plane source(TPS)technique for measuring thermal transport properties of building materials[J].Fire and Materials,1995,19(1):43.
    [16] 陈春,钱春香,许燕波.基于最小热阻理论的混凝土导热系数计算模型[J].东南大学学报:自然科学版,2012,42(2):383.(Chen C,Qian C X,Xu Y B.Calculation model of thermal conductivity of concrete based on minimum thermal resistance theory[J].Journal of Southeast University:Natural Science Edition,2012,42(2):383.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700