用户名: 密码: 验证码:
胶州湾滨海湿地土壤溶解性有机碳淋溶特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Leaching Characteristics of Soil Dissolved Organic Carbon in Coastal Wetlands of Jiaozhou Bay
  • 作者:郗敏 ; 刘姝红 ; 张艳艳 ; 李悦 ; 孔范龙
  • 英文作者:Xi Min;Liu Shuhong;Zhang Yanyan;Li Yue;Kong Fanlong;College of Environmental Science and Engineering,Qingdao University;Zhejiang Ruiyang Environmental Protection Technology Co,Ltd.;
  • 关键词:滨海湿地 ; 土壤溶解性有机碳 ; 淋溶 ; 解吸附 ; 光谱分析
  • 英文关键词:coastal wetland;;soil dissolved organic carbon;;leaching;;desorption;;spectral analysis
  • 中文刊名:STTB
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:青岛大学环境科学与工程学院;浙江瑞阳环保科技有限公司;
  • 出版日期:2019-02-15
  • 出版单位:水土保持通报
  • 年:2019
  • 期:v.39;No.228
  • 基金:国家自然科学基金项目“滨海小流域湿地‘DOC流’关键过程及机理研究”(41771098)
  • 语种:中文;
  • 页:STTB201901003
  • 页数:7
  • CN:01
  • ISSN:61-1094/X
  • 分类号:22-28
摘要
[目的]在山东省青岛市胶州湾滨海湿地采集光滩、碱蓬、芦苇和米草4种不同植被类型土壤,探究滨海湿地土壤溶解性有机碳淋溶特征。[方法]通过室内土柱淋溶试验,测定土壤淋出液溶解性有机碳(DOC)浓度,利用紫外—可见分光光度法对土壤淋出液DOC结构进行分析。[结果]土壤淋出液DOC浓度随土层深度增加而增加;芦苇湿地的土壤淋出液DOC浓度最高,为23.12mg/L,其次分别为碱蓬湿地,米草湿地和光滩湿地,分别为15.22mg/L,14.44mg/L与8.38mg/L。4种土壤淋出液DOC光谱特征值存在一定的差异性,碱蓬湿地土壤淋出液DOC的芳香性和腐殖化程度最高,米草湿地土壤淋出液DOC的分子量和团聚化最大;随土层深度的增加土壤淋出液DOC的芳香性、腐殖化程度增大,分子量以及团聚化程度逐渐减小。[结论]植被残体的分解以及土壤的解吸附能力的差异是造成不同土层土壤淋出液DOC浓度差异的主要原因;而植被类型是影响土壤淋出液DOC结构变化的关键因素。
        [Objective]To collect soil samples covered by four different types of vegetation(mudflat,Suaeda glauca,Phragmites australis and Spartina alterniflora)around Jiaozhou Bay coastal wetland in Qingdao City,Shandong Province,in order to explore the leaching characteristics of soil dissolved organic carbon(DOC)in coastal wetland.[Methods]The DOC contents of soil leachate from the soil samples were determined by soil column leaching test in laboratory,and the DOC structure was analyzed by UV-visible spectrophotometry.[Results]The DOC content in soil leachate increased with the increase of soil depth.The highest DOC content was 23.12 mg/L in soil leachate from P.australis,followed by the S.glauca (15.22 mg/L),S.alterniflora (14.44 mg/L) and mudflat(8.38 mg/L).The aromaticity and humification of DOC in the soil leachate of the S.glauca was the highest,and the molecular weight and aggregation degree of DOC in the soil leachate of S.alterniflora was the largest.With the increase of soil depth,the aromaticity and humification of DOC in the soil leachate increased,while the molecular weight and aggregation degree decreased.[Conclusion]The decomposition of vegetation residues and the difference in soil desorption capacity are the main factors influencing the DOC concentration of leachate in different soil layers.The vegetation type is the key factor affecting the DOC chemical structure in soil leachate.
引文
[1]郭冬楠,臧淑英,赵光影,等.排水造林对小兴安岭湿地土壤溶解性有机碳生物降解和淋溶的影响[J].环境科学学报,2016,36(7):2631-2637.
    [2]杨展.地理学大辞典[M].安徽合肥:安徽人民出版社,1992.
    [3]Guo Yuedong,Song Changchun,Wan Zhongmei,et al.Dynamics of dissolved organic carbon release from a permafrost wetland catchment in Northeast China[J].Journal of Hydrology,2015,531:919-928.
    [4]Wallage Z E,Holden J,McDonald A T.Drain blocking:An effective treatment for reducing dissolved organic carbon loss and water discoloration in a drained peatland[J].Science of the Total Environment,2006,367:811-821.
    [5]Li Zhong,Zhao Qiguo.Organic carbon content and distribution in soils under different land uses in tropical and subtropical China[J].Plant and Soil,2001,231(2):175-185.
    [6]Kei Nambu,Koyo Yonebayashi.Role of dissolved organic matter in translocation of nutrient cations from organic layer materials in coniferous and broad leaf forests[J].Soil Science and Plant Nutrition,1999,45(2):307-319.
    [7]熊丽,杨玉盛,王巧珍,等.可溶性有机碳在米槠天然林土壤中的淋溶特征[J].亚热带资源与环境学报,2014,9(1):46-52.
    [8]姜海超.吉林省主要土壤溶解性有机碳及其淋溶特性研究[D].吉林长春:吉林农业大学,2015.
    [9]汪景宽,李丛,于树,等.不同肥力棕壤溶解性有机碳、氮生物降解特性[J].生态学报,2008,28(12):6165-6171.
    [10]杨继松,刘景双,于君宝,等.草甸湿地土壤溶解有机碳淋溶动态及其影响因素[J].应用生态学报,2006,17(1):113-117.
    [11]夏品华,喻理飞,寇永珍,等.贵州高原草海湿地土壤有机碳分布特征及其与酶活性的关系[J].环境科学学报,2017,37(4):1479-1485.
    [12]Guo Mingxin,Chorover Jon.Transport and fractionation of dissolved organic matter in soil columns[J].Soil Science,2003,168(2),108-118.
    [13]王燕,庞卓,贾月,等.生物炭对北京郊区砂土持水力和氮淋溶特性影响的土柱模拟研究[J].土壤环境,2017,36(9):1820-1828.
    [14]杨继松,刘景双.小叶章湿地土壤微生物生物量碳和可溶性有机碳的分布特征[J].生态学杂志,2009,28(8):1544-1549.
    [15]熊丽,杨玉盛,朱锦懋,等.可溶性有机碳在米槠天然林不同土层中的迁移特征[J].生态学报,2015,35(17):5711-5720.
    [16]白军红,邓伟,朱颜明,等.霍林河流域湿地土壤碳氮空间分布特征及生态效应[J].应用生态学报,2003,14(9):1494-1498.
    [17]解怀亮,王玉刚,李彦,等.灌溉淋溶对土壤有机碳和无机碳及理化性质的影响[J].水土保持学报,2014,28(4):188-193.
    [18]丁虎,郎赟超,刘丛强.土壤碳淋溶流失研究进展[J].地球与环境,2016,44(1):139-146.
    [19]徐嘉晖,孙颖,高雷,等.土壤有机碳稳定性影响因素的研究进展[J].中国生态农业学报,2018,26(2):222-230.
    [20]郗敏,刘红玉,吕宪国.流域湿地水质净化功能研究进展[J].水科学进展,2006,17(4):566-573.
    [21]訾园园,郗敏,孔范龙,等.胶州湾滨海湿地土壤有机碳时空分布及储量[J].应用生态学报,2016,27(7):2075-2083.
    [22]Xi Min,Zi Yuanyuan,Wang Qinggai,et al.Assessment of the content,structure,and source of soil dissolved organic matter in the coastal wetlands of Jiaozhou Bay,China[J].Physics and Chemistry of the Earth,2018,103:35-44.
    [23]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [24]熊丽,杨玉盛,万菁娟,等.可溶性有机碳在土壤剖面淋溶过程中的分馏[J].应用生态学报,2015,26(5):1289-1296.
    [25]Kalbitz K,Schmerwitz J,Schwesig D,et al.Biodegradation of soil-derived dissolved organic matter as related to its properties[J].Geoderma,2003,113(3):273-291.
    [26]史玲珑,张莉,王圣瑞,等.洱海沉积物溶解性有机氮释放及环境影响机制[J].中国环境科学,2017,37(7):2715-2722.
    [27]Zhang Li,Xu Kechen,Wang Shengrui,et al.Characteristics of dissolved organic nitrogen in overlying water of typical lakes of Yunnan Plateau,China[J].Ecological Indicators,2018,84:727-737.
    [28]Kalbitz K,Solinger S,Park J H,et al.Controls on the dynamics of dissolved organic matter in soils:A review[J].Soil Science,2000,165(4):277-304.
    [29]张雪雯,莫熠,张博雅,等.干湿交替及凋落物对若尔盖泥炭土可溶性有机碳的影响[J].湿地科学,2014,12(2):134-140.
    [30]杭子清,王国祥,刘金娥,等.互花米草盐沼土壤有机碳库组分及结构特征[J].生态学报,2014,34(15):4175-4182.
    [31]Xi Min,Kong Fanlong,Li Yue,et al.Temporal-spatial variation of DOC concentration,UV absorbance and the flux estimation in the Lower Dagu River,China[J].Frontiers of Earth Science,2017,11(4):660-669.
    [32]Ma Weiwei,Wang Hui,Huang Rong,et al.Distribution of soil organic carbon storage and carbon density in Gahai Wetland ecosystem[J].Chinese Journal of Applied Ecology,2014,25(3):738-744.
    [33]訾园园,孔范龙,郗敏,等.胶州湾滨海湿地土壤溶解性有机质的三维荧光特性[J].应用生态学报,2016,27(12):3871-3881.
    [34]霍莉莉,邹元春,郭佳伟,等.垦殖对湿地土壤有机碳垂直分布及可溶性有机碳截留的影响[J].环境科学,2013,34(1):283-287.
    [35]韩成卫,李忠佩,刘丽,等.溶解性有机碳在红壤水稻土中的吸附及其影响因素[J].生态学报,2008,28(1):445-451.
    [36]俞元春,何晟,李炳凯,等.杉林土壤溶解有机碳吸附及影响因素分析[J].南京林业大学学报:自然科学版,2005,29(2):15-18.
    [37]曾敏,吕茂奎,陈坦,等.红壤侵蚀退化地土壤对不同来源可溶性有机碳的吸附特征[J].水土保持学报,2018,32(2):191-197.
    [38]Lajtha K,Sollins P,Caldwell B A.Chemical and seasonal controls on the dynamics of dissolved organic matter in a Coniferous Old-Growth Stand in the Pacific Northwest,USA[J].Biogeochemistry,2005,71(2):197-223.
    [39]McKnight D M,Bencala K E,Zellweger G W,et al.Sorption of dissolved organic carbon by hydrous aluminium and iron oxides occurring at the confluence of Deer Creek with the Snake river,Summit County,Colorado[J].Environmental Science and Technology,1992,26(7):1388-1396.
    [40]曾从盛,王维奇,徐欢欢,等.艾比湖湿地土壤活性有机碳及其对厌氧条件下碳分解的影响[J].亚热带资源与环境学报,2011,6(2):10-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700