用户名: 密码: 验证码:
SBR系统在低浓度污水条件下培养的好氧颗粒污泥特性及微生物分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and microorganism analysis of aerobic granular sludge cultivated by SBR systems with low-strength sewage
  • 作者:王启镔 ; 苑泉 ; 宫徽 ; 姚仁达 ; 秦亚 ; 刘祥 ; 徐恒 ; 王凯军
  • 英文作者:WANG Qibin;YUAN Quan;GONG Hui;YAO Renda;QIN Ya;LIU Xiang;XU Heng;WANG Kaijun;State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University;Richina Leather Industrial Co.Ltd.;
  • 关键词:低浓度污水 ; 好氧颗粒污泥 ; 污泥颗粒化 ; 微生物群落
  • 英文关键词:low-strength sewage;;aerobic granular sludge(AGS);;sludge granulation;;microbial community
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:清华大学环境学院环境模拟与污染控制国家重点联合实验室;富国皮革工业股份有限公司;
  • 出版日期:2018-11-05
  • 出版单位:环境工程学报
  • 年:2018
  • 期:v.12
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07103-003)
  • 语种:中文;
  • 页:HJJZ201811009
  • 页数:10
  • CN:11
  • ISSN:11-5591/X
  • 分类号:47-56
摘要
分别采用两段式装置(升流式水解酸化池+SBR(R1))和一段式SBR(R2及R3)小试装置,处理实际污水(R1及R2)及人工配水(R3),考察了不同水源对好氧颗粒污泥的粒径分布、沉降性能以及微生物群落的影响。结果显示,大多数颗粒的粒径均集中在0.12~0.3 mm之间,在R1、R2及R3中的占比分别为32.78%、38.61%和50.28%。当粒径介于0.3~0.5 mm、大于0.5 mm时,R1与R2中的颗粒分配均显著高于R3中的颗粒分配。结果表明,低浓度人工配水(COD均值480 mg·L~(-1))易形成中等粒径的颗粒,而低浓度实际污水(COD均值173 mg·L~(-1))更易形成较大的颗粒。当体积交换比从90%降为50%,R1和R3的SVI30/SVI5维持在0.85以上,R2的SVI30/SVI5出现下降的趋势,这可能是进水中较高的悬浮颗粒引起的污泥轻微膨胀所致。3个主反应器取污泥(分别记S1、S2及S3)进行高通量分析,氨氧化菌Nitrosomonas、氨氧化古菌Nitrososphaera、反硝化聚磷菌Dechloromonas等脱氮除磷优势菌属在S1、S2中的相对比例明显高于在S3中的相对比例。丝状菌方面,在有机负荷率(OLR)较低条件(0.91 kg·(m~3·d)~(-1))下,有利于Aquaspirillum、Enhydrobacter的生长,而较高的OLR(>0.91 kg·(m~3·d)~(-1))有利于Acinetobacter的生长。污水中多种类的有机物,不仅有利于形成致密的胞外聚合物,而且可提高脱氮除磷优势菌属在颗粒污泥中的相对比例。
        The effects of different influent wastewater type on particle size distribution, sedimentation performance and microbial community of aerobic granular sludge were investigated by a two-stage system(hydrolysis up-flow sludge bed+SBR, R1) and one-stage systems(R2 and R3), treating real sewage(R1 and R2) and synthetic wastewater(R3). The results showed that the particle size of granules was mainly between 0.12 mm and 0.3 mm, accounting for 32.78%, 38.61% and 50.28% in R1, R2 and R3, respectively. As the particle size are between 0.3 mm and0.5 mm and greater than 0.5 mm, the particle distributions in R1 and R2 were significantly higher than those in R3. Results indicated that the medium size particles were easy to be formed in the synthetic wastewater with low influent concentration(COD of 480 mg·L~(-1) on average), while larger particles preferred to be formed in real and low-strength wastewater(COD of 173 mg·L~(-1) on average). When the volume exchange ratio decreased from 90%to 50%, the SVI30/SVI5 of R1 and R3 remained above 0.85, and the SVI30/SVI5 of R2 decreased, which may be caused by slight sludge bulking because of high suspended particles in the influent. Sludge samples(S1, S2 and S3)collected from three main reactors were used for high throughput analysis. The relative proportion of the dominant bacteria for nitrogen and phosphorus removal in S1 and S2, such as ammonia oxidizing bacteria Nitrosomonas,ammonia-oxidizing archaea Nitrososphaera, denitrifying phosphate accumulating organisms Dechloromonas and so on, was significantly higher than that in S3. In the field of filamentous bacteria, the low organic loading rate(OLR, 0.91 kg·(m~3·d)~(-1)) was beneficial to the growth of Aquaspirillum and Enhydrobacter, while higher OLR(more than 0.91 kg·(m~3·d)~(-1)) was helpful to the growth of Acinetobacter. Many kinds of influent organic compounds not only contributed to form compact extracellular polymers, but also could increase the relative proportion of dominant bacteria in granular sludge for nitrogen and phosphorus removal.
引文
[1] MUSZYNSKI A, MILOBEDZKA A. The effects of carbon/phosphorus ratio on polyphosphate-and glycogen-accumulating organisms in aerobic granular sludge[J]. International Journal of Environmental Science and Technology,2015,12(9):3053-3060.DOI:10.1007/s13762-015-0828-8.
    [2]苑泉,吴远远,金正宇,等.水解酸化对好氧颗粒污泥形成及脱氮除磷的影响[J].环境科学研究,2018,31(2):360-368.
    [3]彭永臻,吴蕾,马勇,等.好氧颗粒污泥的形成机制、特性及应用研究进展[J].环境科学,2010,31(2):273-281.
    [4] NANCHARAIAH Y V, REDDY G K K. Aerobic granular sludge technology:Mechanisms of granulation and biotechnological applications[J]. Bioresource Technology,2018,247:1128-1143. DOI:10.1016/j.biortech.2017.09.131.
    [5] CORSINO S F, DI BIASE A, DEVLIN T R, et al. Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater[J]. Bioresource technology,2017,226:150-157. DOI:10.1016/j.biortech.2016.12.026.
    [6] CALUWE M, DOBBELEERS T, D'AES J, et al. Formation of aerobic granular sludge during the treatment of petrochemical wastewater[J]. Bioresource Technology,2017,238:559-567. DOI:10.1016/j.biortech.2017.04.068.
    [7] ARROJO B, MOSQUERA-CORRAL A, GARRIDO J M, et al. Aerobic granulation with industrial wastewater in sequencing batch reactors[J]. Water Research,2004,38(14/15):3389-3399. DOI:10.1016/j.watres.2004.05.002.
    [8]魏燕杰,季民,李国一,等.好氧颗粒污泥SBR处理垃圾渗滤液的污泥理化特性分析[J].天津大学学报,2012,45(6):522-528.
    [9] BENGTSSON S, DE BLOIS M, WILEN B, et al. Treatment of municipal wastewater with aerobic granular sludge[J]. Critical Reviews in Environmental Science and Technology,2018,48(2):119-166. DOI:10.1080/10643389.2018.1439653.
    [10] COMA M, VERAWATY M, PIJUAN M, et al. Enhancing aerobic granulation for biological nutrient removal from domestic wastewater[J]. Bioresource Technology,2012,103(1):101-108. DOI:10.1016/j.biortech.2011.10.014.
    [11]季民,李超,张云霞,等.厌氧-好氧颗粒污泥SBR处理城市污水的中试研究[J].环境工程学报,2010, 4(6):1276-1282.
    [12]杨淑芳,张健君,邹高龙,等.实际污水培养好氧颗粒污泥及其特性研究[J].环境科学,2014,35(5):1850-1856.
    [13] PRONK M,DE KREUK M, DE BRUIN B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research,2015,84:207-217. DOI:10.1016/j.watres.2015.07.011.
    [14] ZHOU D, ZHAO Y. Study on forming aerobic granular sludge on domestic sewage[C]//IEEE. 2011 International Conference on Consumer Electronics, Communications and Networks(CECNet),2011:3580-3583. DOI:10.1109/CECNET.2011. 5769454.
    [15] WANG Q, YAO R, YUAN Q, et al. Aerobic granules cultivated with simultaneous feeding/draw mode and low-strength wastewater:Performance and bacterial community analysis[J]. Bioresource Technology,2018,261:232-239. DOI:10.1016/j.biortech.2018.04.002.
    [16]郗皓.基于好氧污泥颗粒化的深度脱氮工艺研发[D].北京:清华大学,2015.
    [17] GUJER W, HENZE M, MINO T, et al. Activated sludge model No. 3[J]. Water Science and Technology,1999,39(1):183-193.DOI:10.1016/S0273-1223(98)00785-9.
    [18] ADAV S S, LEE D J, SHOW K Y, et al. Aerobic granular sludge:Recent advances[J]. Biotechnology Advances,2008,26(5):411-423. DOI:10.1016/j.biotechadv.2008.05.002.
    [19] KANG A J, YUAN Q. Long-term stability and nutrient removal efficiency of aerobic granules at low organic loads[J]. Bioresource Technology,2017,234:336-342. DOI:10.1016/j.biortech.2017.03.057.
    [20]王建龙,张子健,吴伟伟.好氧颗粒污泥的研究进展[J].环境科学学报,2009,29(3):449-473.
    [21] DE KREUK M K, KISHIDA N, TSUNEDA S, et al. Behavior of polymeric substrates in an aerobic granular sludge system[J]. Water Research,2010,44(20):5929-5938. DOI:10.1016/j.watres.2010.07.033.
    [22] BEUN J, VAN LOOSDRECHT M, HEIJNEN J. Aerobic granulation in a sequencing batch airlift reactor[J]. Water Research,2002,36(3):702-712. DOI:10.1016/S0043-1354(01)00250-0.
    [23] FERRERA I, SANCHEZ O. Insights into microbial diversity in wastewater treatment systems:How far have we come?[J].Biotechnology Advances,2016,34(5):790-802. DOI:10.1016/j.biotechadv.2016.04.003.
    [24] YANG X P, WANG S M, ZHANG D W, et al. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1[J]. Bioresource Technology,2011,102(2):854-862. DOI:10.1016/j.biortech.2010.09.007.
    [25] SAEID A, LABUDA M, CHOJNACKA K, et al. Biotechnological processes in production of phosphorus fertilizers[J]. Przemysl Chemiczny,2012,91(5):952-955.
    [26] GOMEZ-GUZMAN A, JIMENEZ-MAGANA S, GUERRA-RENTERIA A S, et al. Evaluation of nutrients removal(NO3-N, NH3-N and PO4-P)with Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and a consortium of these microorganisms in the treatment of wastewater effluents[J]. Water Science and Technology,2017,76(1):49-56. DOI:10.2166/wst.2017.175.
    [27] KIM J M, LEE H J, LEE D S, et al. Characterization of the denitrification-associated phosphorus uptake properties of“Candidatus Accumulibacter phosphatis” clades in sludge subjected to enhanced biological phosphorus removal[J]. Applied and Environmental Microbiology,2013,79(6):1969-1979. DOI:10.1128/AEM.03464-12.
    [28] LEMAIRE R, YUAN Z, BLACKALL L, et al. Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system[J]. Environmental Microbiology,2008,10(2):354-363. DOI:10.1111/j.1462-2920.2007.01456.x.
    [29] GAO P, XU W, SONTAG P, et al. Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China[J]. Applied Microbiology and Biotechnology,2016,100(10):4663-4673. DOI:10.1007/s00253-016-7307-0.
    [30]王凯军,许晓鸣.丝状菌污泥膨胀理论分析[J].中国给水排水,2001,17(3):66-69.
    [31]王凯军.高负荷活性污泥膨胀控制的试验研究[J].给水排水,1999,25(11):30-33.
    [32]李志华,莫丹丹,赵静,等.好氧颗粒污泥系统中丝状菌演替规律及其菌丝缠绕特性分析[J].环境工程学报,2013,7(8):2813-2817.
    [33] GUO F, ZHANG T. Profiling bulking and foaming bacteria in activated sludge by high throughput sequencing[J]. Water Research,2012,46(8):2772-2782. DOI:10.1016/j.watres.2012.02.039.
    [34] SEVIOUR E M, BLACKALL L L, CHRISTENSSON C, et al. The filamentous morphotype eikelboom type 1863 is not a single genetic entity[J]. Journal of Applied Microbiology,1997,82(4):411-421. DOI:10.1046/j.1365-2672.1997.00111.x.
    [35] NIELSEN P H, DE MURO M A, NIELSEN J L. Studies on the in situ physiology of Thiothrix spp. present in activated sludge[J].Environmental Microbiology,2000,2(4):389-398. DOI:10.1046/j.1462-2920.2000.00120.x.
    [36] HOWARTH R, UNZ R F, SEVIOUR E M, et al. Phylogenetic relationships of filamentous sulfur bacteria(Thiothrix spp. and Eikelboom type 021N bacteria)isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp nov.,Thiothrix unzii sp nov., Thiothrix fructosivorans sp nov and Thiothrix defluvii sp nov[J]. International Journal of Systematic Bacteriology,1999,49:1817-1827. DOI:10.1099/00207713-49-4-1817.
    [37] BLACKALL L L, HARBERS A E, GREENFIELD P F, et al. Foaming in activated sludge plants:A survey in queensland, australia and an evaluation of some control strategies[J]. Water Research,1991,25(3):313-317. DOI:10.1016/0043-1354(91)90011-E.
    [38] LIU J R, BURRELL P, SEVIOUR E M, et al. The filamentous bacterial morphotype ‘Nostocoida limicola’ I contains at least two previously described genera in the low G+C gram positive bacteria[J]. Systematic and Applied Microbiology,2000,23(4):528-534.DOI:10.1016/S0723-2020(00)80027-2.
    [39] MIELCZAREK A T, KRAGELUND C, ERIKSEN P S, et al. Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal[J]. Water Research,2012,46(12):3781-3795. DOI:10.1016/j.watres.2012.04.009.
    [40] THOMSEN T R, KRAGELUND C, NIELSEN P H. Identity, abundance and physiology of Aquaspirillum-related filamentous bacteria in activated sludge[J]. Water Science and Technology,2006,54(1):237-245. DOI:10.2166/wst.2006.392.
    [41] CETIN E, KARAKAS E, DULEKGURGEN E, et al. Effects of high-concentration influent suspended solids on aerobic granulation in pilot-scale sequencing batch reactors treating real domestic wastewater[J]. Water Research,2018,131:74-89. DOI:10.1016/j.watres.2017.12.014.
    [42] WAGNER J, WEISSBRODT D G, MANGUIN V, et al. Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors[J]. Water Research,2015,85:158-166. DOI:10.1016/j.watres.2015.08.030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700