用户名: 密码: 验证码:
湘中坳陷海陆过渡相页岩吸附能力及控制因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption capacity and controlling factors of marine-continental transitional shale in Xiangzhong Depression
  • 作者:杨滔 ; 曾联波 ; 聂海宽 ; 冯动军 ; 包汉勇 ; 王濡岳
  • 英文作者:YANG Tao;ZENG Lianbo;NIE Haikuan;FENG Dongjun;BAO Hanyong;WANG Ruyue;College of Geosciences,China University of Petroleum;Research Institute of Petroleum Exploration and Production Sinopec;Research Institute of Petroleum Exploration and Production,Sinopec;Research Institute of Exploration and Development Sinopec Jianghan Oilfield Company;
  • 关键词:海陆过渡相 ; 页岩气 ; 有机碳含量 ; 吸附能力 ; 二叠系 ; 湘中坳陷
  • 英文关键词:marine-continental transitional facies;;shale gas;;TOC content;;adsorption capacity;;Permian;;Xiangzhong Depression
  • 中文刊名:YANX
  • 英文刊名:Lithologic Reservoirs
  • 机构:中国石油大学(北京)地球科学学院;中国石油化工股份有限公司石油勘探开发研究院;中国石化江汉油田分公司勘探开发研究院;
  • 出版日期:2018-12-25 14:29
  • 出版单位:岩性油气藏
  • 年:2019
  • 期:v.31
  • 基金:石油化工联合基金项目“页岩油气甜点预测的储层地质力学基础理论研究”(编号:U1663203)资助
  • 语种:中文;
  • 页:YANX201902012
  • 页数:10
  • CN:02
  • ISSN:62-1195/TE
  • 分类号:108-117
摘要
为了研究湘中坳陷二叠系龙潭组和大隆组黑色页岩的吸附能力及其控制因素,开展了全岩矿物含量分析、有机地球化学分析、储层物性分析和等温吸附实验研究。结果表明:①页岩主要为硅质页岩,石英质量分数平均为34.4%,且多为生物成因硅,黏土矿物质量分数平均为24.4%,矿物组分特征与美国Barnett页岩和四川盆地古生界优质海相页岩类似。②页岩中干酪根类型以Ⅱ_2型为主,处于成熟阶段,有机碳质量分数平均为2.63%,有机质孔发育,主要为微孔和中孔。③页岩吸附能力较强,饱和吸附质量体积为0.75~8.60 m~3/t,平均为4.51 m~3/t,具有良好的甲烷吸附能力。④页岩吸附能力主要受控于有机碳含量、氯仿沥青"A"、总烃、石英含量、岩石密度和孔隙结构。其中,有机碳含量对页岩吸附能力的影响最为显著。湘中坳陷海陆过渡相页岩具有较大的勘探潜力。
        In order to study the adsorption capacity and controlling factors of black shale of Permian Longtan Formation and Dalong Formation in Xiangzhong Depression,a variety of experimental analyses such as total rock mineral content,organic geochemistry,reservoir physical properties and isothermal adsorption were carried out. The results show that:(1)Shales are mainly siliceous shales with an average quartz mass fraction of 34.4%,mostly biogenic silicon,and average clay mineral mass fraction of 24.4%. The mineral composition characteristics are similar to those of Barnett shale in the United States and high-quality marine shale of Paleozoic in Sichuan Basin.(2)Kerogen in shale is mainly type Ⅱ_2,which is in mature stage. The average TOC mass fraction is 2.63%. Organic pores are developed,mainly micropores and mesopores.(3)Shale has a strong adsorption capacity,and the saturated adsorption mass volume is 0.75-8.60 m~3/t,with an average of 4.51 m~3/t,which has good methane adsorption capacity.(4)Shale adsorption capacity is mainly controlled by TOC content,chloroform asphalt"A",total hydrocarbon,quartz content,rock density and pore structure. Among them,TOC content is the most significant controlling factor. The marine-continental transitional shale in Xiangzhong Depression has great exploration potential.
引文
[1]张金川,金之钧,袁明生.页岩气成藏机理和分布.天然气工业,2004,24(7):15-18.ZHANG J C,JIN Z J,YUAN M S. Reservoiring mechanism of shale gas and its distribution. Natural Gas Industry,2004,24(7):15-18.
    [2] CURTIS J B. Fractured shale-gas systems. AAPG Bulletin,2002,86(11):1921-1938.
    [3]李新景,胡素云,程克明.北美裂缝性页岩气勘探开发的启示.石油勘探与开发,2007,34(4):392-400.LI X J,HU S Y,CHENG K M. Suggestions from the development of fractured shale gas in North America. Petroleum Exploration and Development,2007,34(4):392-400.
    [4]朱汉卿,贾爱林,位云生,等.基于氩气吸附的页岩纳米级孔隙结构特征.岩性油气藏,2018,30(2):77-84.ZHU H Q,JIA A L,WEI Y S,et al. Nanopore structure characteristics of shale based on Ar adsorption. Lithologic Reservoirs,2018,30(2):77-84.
    [5]何建华,丁文龙,付景龙,等.页岩微观孔隙成因类型研究.岩性油气藏,2014,26(5):30-35.HE J H,DING W L,FU J L,et al. Study on genetic type of micropore in shale reservoir. Lithologic Reservoirs,2014,26(5):30-35.
    [6]陈居凯,朱炎铭,崔兆帮,等.川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏,2018,30(1):55-62.CHEN J K,ZHU Y M,CUI Z B,et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin.Lithologic Reservoirs,2018,30(1):55-62.
    [7]毕赫,姜振学,李鹏,等.渝东南地区龙马溪组页岩吸附特征及其影响因素.天然气地球科学,2014,25(2):302-310.BI H,JIANG Z X,LI P,et al. Adsorption characteristic and influence factors of Longmaxi shale in southeastern Chongqing.Natural Gas Geoscience,2014,25(2):302-310.
    [8]顾忠安,郑荣才,王亮,等.渝东涪陵地区大安寨段页岩储层特征研究.岩性油气藏,2014,26(2):67-73.GU Z A,ZHENG R C,WANG L,et al. Characteristics of shale reservoir of Da'anzhai segment in Fuling area,eastern Chongqing. Lithologic Reservoirs,2014,26(2):67-73.
    [9]周启伟,李勇,汪正,等.龙门山前陆盆地南段须家河组页岩有机地球化学特征.岩性油气藏,2016,28(6):45-51.ZHOU Q W,LI Y,WANG Z,et al. Organic geochemical characteristics of shale of Xujiahe Formation in the southern Longmen Mountain foreland basin. Lithologic Reservoirs,2016,28(6):45-51.
    [10]顾志翔,彭勇民,何幼斌,等.湘中坳陷二叠系海陆过渡相页岩气地质条件.中国地质,2015,42(1):288-299.GU Z X,PENG Y M,HE Y B,et al. Geological conditions of Permian sea-land transitional facies shale gas in the Xiangzhong Depression. Geology in China,2015,42(1):288-299.
    [11]刘光祥,金之钧,邓模,等.川东地区上二叠统龙潭组页岩气勘探潜力.石油与天然气地质,2015,36(3):481-487.LIU G X,JIN Z J,DENG M,et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin. Oil&Gas Geology,2015,36(3):481-487.
    [12]包书景,林拓,聂海宽,等.海陆过渡相页岩气成藏特征初探:以湘中坳陷二叠系为例.地学前缘,2016,23(1):44-53.BAO S J,LIN T,NIE H K,et al. Preliminary study of the transitional facies shale gas reservoir characteristics:Taking Permian in Xiangzhong Depression as an example. Geoscience Frontiers,2016,23(1):44-53.
    [13]陈洁,潘树仁,周国兴.江苏下扬子区二叠系龙潭组—大隆组页岩气勘探前景分析.中国煤炭地质,2013,25(10):22-25.CHEN J,PAN S R,ZHOU G X. Permian Longtan FormationDalong Formation shale gas exploration prospect analysis in Lower Yangtze area,Jiangsu. Coal Geology of China,2013,25(10):22-25.
    [14] ANCELL K L,PRICE H S,FORD W K. An investigation of the gas producing and storage mechanism of the Devonian Shale at Cottageville Field. SPE 7938,1979.
    [15] LANGMUIR I. The adsorption of gases on plane surface glass,mica and platinum. Journal of the American Chemical Society,1918,40(9):1361-1403.
    [16] ROSS D J K,BUSIN R M. Shale gas potential of the lower Jurassic Gordondale member,northeastern British Columbia,Canada. Bulletin of Canadian Petroleum Geology,2007,55(1):51-75.
    [17] ROSS D J K,BUSIN R M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoir. Fuel,2007,86(17):2696-2706.
    [18]申宝剑,秦建中,冯丹,等.烃源岩有机碳含量与生排油效率动态评价.石油实验地质,2017,39(4):505-510.SHEN B J,QIN J Z,FENG D,et al. Dynamic assessment of organic carbon content and hydrocarbon generation and expulsion efficiency in source rocks. Petroleum Geology and Experiment,2017,39(4):505-510.
    [19]董春梅,马存飞,栾国强,等.泥页岩热模拟实验及成岩演化模式.沉积学报,2015,33(5):1053-1061.DONG C M,MA C F,LUAN G Q,et al. Pyrolysis simulation experiment and diagenesis evolution pattern of shale. Acta Sedimentologica Sinica,2015,33(5):1053-1061.
    [20]金之钧,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素.地学前缘,2016,23(1):1-10.JIN Z J,HU Z Q,GAO B,et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations,southeastern Sichuan Basin. Geoscience Frontiers,2016,23(1):1-10.
    [21] ROWE H D,LOUCKS R G,RUPPEL S,et al. Mississippian Barnett Formation,Fort Worth Basin,Texas:Bulk geochemical inferences and Mo-TOC constraint on the severity of hydrographic restriction. Chemical Geology,2008,257(1/2):16-25.
    [22] ANGEL D L. Carbon flow within the colonial radiolarian microcosm. Symbiosis,1991,10(1/3):195-217.
    [23] YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terrances. Sedimentary Geology,1987,52(1):65-108.
    [24]赵建华,金之钧,金振奎,等.四川盆地五峰组—龙马溪组含气页岩中石英成因研究.天然气地球科学,2016,27(2):377-386.ZHAO J H,JIN Z J,JIN Z K,et al. The genesis of quartz in Wufeng-Longmaxi gas shales,Sichuan Basin. Natural Gas Geoscience,2016,27(2):377-386.
    [25]陈启林,黄成刚.沉积岩中溶蚀作用对储集层的改造研究进展.地球科学进展,2018,33(11):1112-1129.CHEN Q L,HUANG C G. Research progress of the modification of reservoirs by dissolution in sedimentary rock. Advances in Earth Science,2018,33(11):1112-1129.
    [26] PASSEY Q R,BOHACES K M,ESCH W L,et al. From oilprone source rock to gas-producing shale reservoir,geologic and petrophysical characterization of unconventional shale gas reservoirs. International Oil and Gas Conference and Exhibition in China,Beijing,2010.
    [27]谢卫东,王猛,代旭光.渝东南地区下志留统龙马溪组页岩吸附CO2特征及影响因素分析.河南理工大学学报(自然科学版),2018,37(6):80-88.XIE W D,WANG M,DAI X G. CO2adsorption characteristics and its affecting factors of Lower Silurian,Longmaxi Formation shale in southeast Chongqing. Journal of Henan Polytechnic University(Natural Science),2018,37(6):80-88.
    [28]曾芳.不同类型泥页岩吸附能力定量表征研究.大庆:东北石油大学,2014.ZENG F. A study on quantitative characterization of adsorption capacity of shale. Daqing:Northeast Petroleum University,2014.
    [29]杨琛,盛国英,党志.干酪根对多环芳烃吸附机理的初步研究.环境化学,2007,26(4):472-475.YANG C,SHENG G Y,DANG Z. Sorption mechanism of polycyclic aromatic hydrocarbons(PAHs)on kerogen. Environmental Chemistry,2007,26(4):472-475.
    [30] SCHIEBER J G B. On the origin and significance of pyrite spheres in Devonian black shales of north America. Journal of Sedimentary Research,2001,71:155-166.
    [31]徐祖新,韩淑敏,王启超.中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义.岩性油气藏,2015,27(2):31-37.XU Z X,HAN S M,WANG Q C. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in middle Yangtze area. Lithologic Reservoirs,2015,27(2):31-37.
    [32]聂海宽,张金川.页岩气聚集条件及含气量计算:以四川盆地及其周缘下古生界为例.地质学报,2012,86(2):349-361.NIE H K,ZHANG J C. Shale gas accumulation conditions and gas content calculation:a case study of Sichuan Basin and its periphery in the Lower Paleozoic. Acta Geologica Sinica,2012,86(2):349-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700