用户名: 密码: 验证码:
植物功能性状及其叶经济谱对城市热环境的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of plant functional traits and leaf economics spectrum to urban thermal environment
  • 作者:朱济友 ; 于强 ; 刘亚培 ; 覃国铭 ; 李金航 ; 徐程扬 ; 何韦均
  • 英文作者:Zhu Jiyou;Yu Qiang;Liu Yapei;Qin Guoming;Li Jinhang;Xu Chengyang;He Weijun;College of Forestry,Beijing Forestry University;Research Institute of Tropical Forestry,Chinese Academy of Forestry;College of Forestry,Guangxi University;
  • 关键词:城市热环境 ; 植物功能性状 ; 叶经济谱
  • 英文关键词:urban thermal environment;;plant functional trait;;leaf economics spectrum
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:北京林业大学林学院;中国林业科学研究院热带林业研究所;广西大学林学院;
  • 出版日期:2018-08-25 13:23
  • 出版单位:北京林业大学学报
  • 年:2018
  • 期:v.40
  • 基金:林业公益性行业科研专项(2011140051);; 林业公益性行业重大项目(20140430102)
  • 语种:中文;
  • 页:BJLY201809008
  • 页数:10
  • CN:09
  • ISSN:11-1932/S
  • 分类号:76-85
摘要
【目的】了解植物功能性状及叶经济谱对城市热环境的响应,有助于从功能生态学角度理解植物对城市环境的适应机制。【方法】以北京热环境高温点和低温点常见绿化树种国槐、栾树和洋白蜡为研究对象,测定地表温度、土壤含水量及叶功能性状指标。【结果】(1)城市热环境地表温度表现为高温点(HTR)显著高于低温点(CTR)(P<0.05);土壤含水量则表现为CTR相对大于HTR,但未达到显著水平。(2)城市热环境对不同树种影响存在一定差异,其中对国槐、栾树的影响主要源于高温胁迫,对洋白蜡的影响主要源于干旱胁迫。(3)在城市热环境中,叶性状关系与全球尺度基本一致,比叶面积(SLA)与叶绿素含量(CHL)、叶干物质含量(LDMC)、叶组织密度(LTD)呈极显著的负相关关系(P<0.01);CHL与LDMC、LTD间存在极显著的正相关关系(P<0.01);LDMC与LTD间呈现显著的正相关关系(P<0.05)。气孔密度(SD)与气孔面积(SS)、气孔开度(SA)、SLA之间分别呈负相关关系,但差异不显著(P>0.05)。(4)RDA结果显示,植物功能性状指标中SLA主要受地表温度的正向影响(R2=0.97,P<0.05),但土壤水分含量对它们具有负向影响(R2=0.75,P<0.05);地表温度对LDMC、LTD、CHL有正向作用,但土壤含水量对它们有负向作用。【结论】全球叶经济谱在城市热环境中也同样存在,总体上向"快速投资-收益"型一端偏移,在HTR植物具有低的SLA,小的SS和SA,高的CHL、LDMC、LTD和SD,以适应高温、干旱的特殊生境。因此,在城市绿化植物配置时,在热环境高值区应选择耐高温、耐旱的树种,同时采取降温、灌溉等措施来降低高温的影响。
        [Objective] Exploring variations of plant functional traits and leaf economics spectrum along urban thermal environment provides a chemical basis for examining species strategies as shaped by their local habitat. [Method]In this study,we quantified the land surface temperature,soil moisture content and leaf functional traits of Sophora japonica,Koelreuteria paniculate and Fraxinus pennsylvanica,which were grown in urban thermal environment in Beijing. [Result ]( 1) The urban thermal environment significantly increased the land surface temperature( P < 0. 05), and showed high temperatureregion( HTR) > low temperature region( CTR); the soil moisture content was CTR > HTR,but the difference was not significant( P > 0. 05).( 2) There were some differences in the effects of urban thermal environment on different tree species. The effects of urban thermal environment on Sophora japonica and Koelreuteria paniculate were mainly originated from high temperature stress,and its effects on Fraxinus pennsylvanica were mainly originated from drought stress,especially in high temperature environments.( 3) The relationships between leaf traits under the urban thermal environment were similar to those on the global scale. Specific leaf area( SLA) presented significant negative correlation with chlorophyll content( CHL),leaf dry matter content( LDMC) and leaf tissue density( LTD)( P <0. 01). CHL presented significant positive correlation with LDMC and LTD( P < 0. 01),and there was a positive correlation between LDMC and LTD( P < 0. 05). Stomatal density( SD) showed a negative correlation with stomatal size( SS),stomatal aperture( SA) and SLA,but they did not reach a significant level( P > 0. 05).( 4) RDA results showed that SLA was mainly affected by land surface temperature( R2= 0. 97,P < 0. 05),but soil moisture content had negative effects on plant functional traits( R2=0. 75,P < 0. 05). Land surface temperature had positive effects on LDMC,LTD,and CHL,but soil moisture content had negative effects on them. [Conclusion] The results of this study indicated that a leaf economics spectrum also existed in plant species in the urban thermal environment with a quick investment-return on the leaf economics spectrum. The species in HTR had lower SLA,SS and SA,higher CHL,LDMC,LTD and SD,which may be involved in the adaptation of plants to high-temperature and arid conditions. Therefore,when planting plants in urban areas,heat-resistant and drought-tolerant tree species should be selected in HTR. At the same time,the effects of high temperature should be reduced by increasing cooling and irrigation in the growing season.
引文
[1]Pitman S D,Daniels C B,Ely M E.Green infrastructure as life support:urban nature and climate change[J].Transactions of the Royal Society of South Australia,2015,139(1):97-112.
    [2]Priyadarsini R,Hien W N,David C K W.Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island[J].Solar Energy,2008,82(8):727--745.
    [3]Nowak D J,Hoehn R E,Bodine A R,et al.Urban forest structure,ecosystem services and change in Syracuse,NY[J].Urban Ecosystems,2016,19(4):1455-1477.
    [4]Duan J L,Song X,Zhang X L.Spatiotemporal variation of urban heat island in Zhengzhou City based on RS DUAN[J].Chinese Journal of Applied Ecology,2011(1):165--170.
    [5]侯鹏,蒋卫国,曹广真.城市湿地热环境调节功能的定量研究[J].北京林业大学学报,2010,32(3):191--196.Hou P,Jiang W G,Cao G Z.Quantitative analyses of thermal regulation function of urban wetland[J].Journal of Beijing Forestry University,2010,32(3):191--196.
    [6]Lun I,Mochida A,Ooka R.Progress in numerical modelling for urban thermal environment studies[J].Advances in Building Energy Research,2009,3(1):147-188.
    [7]Fernández F J,Alvarez-Vázquez L J,García-Chan N,et al.Optimal location of green zones in metropolitan areas to control the urban heat island[J].Journal of Computational&Applied Mathematics,2015,289(C):412--425.
    [8]冯悦怡,胡潭高,张力小.城市公园景观空间结构对其热环境效应的影响[J].生态学报,2014,34(12):3179-3187.Feng Y Y,Hu T G,Zhang L X.Impacts of structure characteristics on the thermal environment effect of city parks[J].Acta Ecologica Sinica,2014,34(12):3179--3187.
    [9]武鹏飞,王茂军,张学霞.北京市植被绿度与城市热岛关系研究[J].北京林业大学学报,2009,31(5):54--60.Wu P F,Wang M J,Zhang X X.Relationship between vegetation greenness and urban heat island effect in Beijing[J].Journal of Beijing Forestry University,2009,31(5):54-60.
    [10]Priyadarsini R,Hien W N,David C K W.Microclimatic modelingof the urban thermal environment of Singapore to mitigate urban heat island[J].Solar Energy,2008,82(8):727--745.
    [11]王亚婷,范连连.城市热岛对植物生长的影响以及叶片形态构成的适应性[J].生态学报,2011,30(20):5992--5998.Wang Y T,Fan L L.Effect of urban heat island on plant growth and adaptability of leaf morphology constitute[J].Acta Ecologica Sinica,2011,30(20):5992--5998.
    [12]Shipley B,Lechowicz M J,Wright I,et al.Fundamental tradeoffs generating the worldwide leaf economics spectrum[J].Ecology,2006,87(3):535--541.
    [13]Royer D L,Miller I M,Peppe D J,et al.Leaf economic traits from fossils support a weedy habit for early angiosperms[J].American Journal of Botany,2010,97(3):438-445.
    [14]Wright I J,Reich P B,Westoby M,et al.The worldwide leaf economics spectrum[J].Nature,2004,428:821.
    [15]陈莹婷,许振柱.植物叶经济谱的研究进展[J].植物生态学报,2014,38(10):1135--1153.Chen Y T,Xu Z Z.Review on research of leaf economics spectrum[J].Chinese Journal of Plant Ecology,2014,38(10):1135--1153.
    [16]张耘,于强,李梦莹,等.基于En KF-3DVar模型的海淀区地表温度模拟[J].农业机械学报,2017,48(9):166-172.Zhang Y,Yu Q,Li M Y,et al.Simulation of land surface temperature in Haidian District based on En KF-3DVar model[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(9):166--172.
    [17]江樟焰,陈云浩,李京.基于Landsat TM数据的北京城市热岛研究[J].武汉大学学报(信息科学版),2006,31(2):120--123.Jiang Z Y,Chen Y H,Li J.Heat island effect of Beijng based on Landsat TM data[J].Geomatics and Information Science of Wuhan University,2006,31(2):120--123.
    [18]朱济友,徐程扬,吴鞠.基于e Cognition植物叶片气孔密度及气孔面积快速测算方法[J].北京林业大学学报,2018,40(5):37--45.Zhu J Y,Xu C Y,Wu J.Fast estimation of stomatal density and stomatal area of plant leaves based on e Cognition[J].Journal of Beijing Forestry University,2018,40(5):37--45.
    [19]张立荣,牛海山,汪诗平,等.增温与放牧对矮嵩草草甸4种植物气孔密度和气孔长度的影响[J].生态学报,2010,30(24):6961-6969.Zhang L R,Niu H S,Wang S P,et al.Effects of temperature increase and grazing on stomatal density and length of four alpine Kobresia meadow species,Qinghai-Tibetan Plateau[J].Acta Ecologica Sinica,2010,30(24):6961--6969.
    [20]陈媛媛,江波,王效科,等.元宝枫幼苗生长和光合特性对硬化地表的响应[J].生态学杂志,2016,35(12):3258-3265.Chen Y Y,Jiang B,Wang X K,et al.Responses of growth and photosynthetic characteristics of Acer truncatum seedlings to hardening pavements[J].Chinese Journal of Ecology,2016,35(12):3258--3265.
    [21]叶子奇,邓如军,王雨辰,等.胡杨繁殖根系分枝特征及其与土壤因子的关联性[J].北京林业大学学报,2018,40(2):31-39.Ye Z Q,Deng R J,Wang Y C,et al.Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J].Journal of Beijing Forestry University,2018,40(2):31-39.
    [22]陈媛媛,江波,王效科,等.北京典型绿化树种幼苗光合特性对硬化地表的响应[J].生态学报,2017,37(11):3673-3682.Chen Y Y,Jiang B,Wang X K,et al.Effect of pavement on the leaf photosynthetic characteristics of saplings of three common tree species(Pinus tabulaeformis,Fraxinus chinensis,and Acer truncatum)in Beijing[J].Acta Ecologica Sinica,2017,37(11):3673-3682.
    [23]杨锐,张博睿,王玲玲,等.元谋干热河谷植物功能性状组合的海拔梯度响应[J].生态环境学报,2015,24(1):49-56.Yang R,Zhang B R,Wang L L,et al.The response of plant functional traits'group to gradients of altitude in dry-hot valley of Yuan-Mou[J].Ecology and Environmental Sciences,2015,24(1):49-56.
    [24]韩威,刘超,樊艳文,等.长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征[J].北京林业大学学报,2014,36(4):47-53.Han W,Liu C,Fan Y W,et al.Responses of leaf morphological traits for broadleaved woody plants along the altitudinal gradient of Changbai Mountain,northeastern China[J].Journal of Beijing Forestry University,2014,36(4):47--53.
    [25]Garnier E,Cortez J,Billès G,et al.Plant functional markers capture ecosystem properties during secondary succession[J].Ecology,2004,85(9):2630-2637.
    [26]Lavorel S,Grigulis K,Lamarque P,et al.Using plant functional traits to understand the landscape distribution of multiple ecosystem services[J].Journal of Ecology,2011,99(1):135--147.
    [27]Chave J,Coomes D,Jansen S,et al.Towards a worldwide wood economics spectrum[J].Ecology Letters,2010,12(4):351-366.
    [28]Murru V,Marignani M,Acosta A T R,et al.Bryophytes in Mediterranean coastal dunes:ecological strategies and distribution along the vegetation zonation[J].Plant Biosystems,2018(1):1-8.
    [29]Huang H,Ooka R,Kato S.Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer[J].Atmospheric Environment,2005,39(34):6362--6375.
    [30]黄群芳,陆玉麒.短期大规模人口流动对上海市城市热岛的影响[J].气候与环境研究,2017,22(6):708--716.Huang Q F,Lu Y Q.Effects of short-term massive human migration during the Chinese new year on the urban heat island effect in Shanghai[J].Climatic and Environmental Research,2017,22(6):708--716.
    [31]Freschet G T,Cornelissen J H C,Logtestijn R S P,et al.Evidence of the'plant economics spectrum'in a subarctic flora[J].Journal of Ecology,2010,98(2):362--373.
    [32]Mason C M,Donovan L A.Does investment in leaf defenses drive changes in leaf economic strategy?A focus on whole-plant ontogeny[J].Oecologia,2015,177(4):1053--1066.
    [33]Cornelissen J H C,Lavorel S,Garnier E,et al.A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J].Australian Journal Botany,2003,51(4):335-380.
    [34]Wang H,Chen H.Plant functional groups based on vegetative and reproductive traits in a subtropical forest community[J].Journal of Forest Research,2013,18(6):482--490.
    [35]Swenson N G.The functional ecology and diversity of tropical tree assemblages through space and time:from local to regional and from traits to transcriptomes[J].Isrn Forestry,2013,2012(2):133-140.
    [36]赵新风,徐海量,张鹏,等.养分与水分添加对荒漠草地植物群落结构和物种多样性的影响[J].植物生态学报,2014,38(2):167--177.Zhao X F,Xu H L,Zhang P,et al.Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands[J].Chinese Journal of Plant Ecology,2014,38(2):167-177.
    [37]王均伟,侯嫚嫚,黄利亚,等.长白山阔叶红松林系统发育和功能性状beta多样性[J].北京林业大学学报,2016,38(10):21-27.Wang J W,Hou M M,Huang L Y,et al.Phylogenetic and functional beta diversity in a broadleaved Korean pine mixed forest in Changbai Mountains,northeastern China[J].Journal of Beijing Forestry University,2016,38(10):21-27.
    [38]任昱,卢琦,吴波,等.不同模拟增雨下白刺比叶面积和叶干物质含量的比较[J].生态学报,2015,35(14):4707--4715.Ren Y,Lu Q,Wu B,et al.Specific leaf area and leaf dry matter content of Nitraria tangutorum in the artificially simulated precipitation[J].Acta Ecologica Sinica,2015,35(14):4707-4715.
    [39]张林,罗天祥,邓坤枚,等.云南松比叶面积和叶干物质含量随冠层高度的垂直变化规律[J].北京林业大学学报,2008,30(1):40--44.Zhang L,Luo T X,Deng K M,et al.Vertical variations in specific leaf area and leaf dry matter content with canopy height in Pinus yunnanensis[J].Journal of Beijing Forestry University,2008,30(1):40--44.
    [40]张桐,洪秀玲,孙立炜,等.6种植物叶片的滞尘能力与其叶面结构的关系[J].北京林业大学学报,2017,39(6):70-77.Zhang T,Hong X L,Sun L W,et al.Particle-retaining characteristics of six tree species and their relations with microconfigurations of leaf epidermis[J].Journal of Beijing Forestry University,2017,39(6):70-77.
    [41]徐振锋,胡庭兴,张力,等.模拟增温对川西亚高山林线交错带绵穗柳生长、叶物候和叶性状的影响[J].应用生态学报,2009,20(1):7-12.Xu Z F,Hu T X,Zhang L,et al.Effects of simulated warming on the growth,leaf phenology,and leaf traits of Salix eriostachya in subalpine timberline ecotone of western Sichuan,China[J].Chinese Journal of Applied Ecology,2009,20(1):7--12.
    [42]赵文霞,邹斌,郑景明,等.常绿阔叶林常见树种根茎叶功能性状的相关性[J].北京林业大学学报,2016,38(6):35-41.Zhao W X,Zou B,Zheng J M,et al.Correlations between leaf,stem and root functional traits of common tree species in an evergreen broad-leaved forest[J].Journal of Beijing Forestry University,2016,38(6):35--41.
    [43]杨士梭,温仲明,苗连朋,等.黄土丘陵区植物功能性状对微地形变化的响应[J].应用生态学报,2014,25(12):3413-3419.Yang S S,Wen Z M,Miao L P,et al.Responses of plant functional traits to micro-topographical changes in hilly and gully region of the Loess Plateau,China[J].Chinese Journal of Applied Ecology,2014,25(12):3413-3419.
    [44]Marteinsdóttir B,Eriksson O.Plant community assembly in seminatural grasslands and eaarable fields:a trait-based approach[J].Journal of Vegetation Science,2013,25(1):77-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700