用户名: 密码: 验证码:
线路避雷器安装布点策略研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the Installation Point Strategy of Line Arrester
  • 作者:许军 ; 肖佩 ; 傅智为 ; 吴文斌 ; 谢文炳
  • 英文作者:XU Jun;XIAO Pei;FU Zhiwei;WU Wenbin;XIE Wenbing;State Grid Fujian Electric Power Corporation Research Institute;State Key Laboratory of Advanced Electromagnetic Engineering and Technology of Huazhong University of Science and Technology;
  • 关键词:220kV输电线路 ; 反击耐雷性能 ; 风险评估 ; 线路避雷器 ; 安装策略
  • 英文关键词:220kV transmission lines;;counterattack lightning withstand performance;;risk evaluation;;line arrester;;installation strategy
  • 中文刊名:DCPQ
  • 英文刊名:Insulators and Surge Arresters
  • 机构:国网福建省电力有限公司电力科学研究院;华中科技大学强电磁工程与新技术国家重点实验室;
  • 出版日期:2019-04-25
  • 出版单位:电瓷避雷器
  • 年:2019
  • 期:No.288
  • 语种:中文;
  • 页:DCPQ201902026
  • 页数:6
  • CN:02
  • ISSN:61-1129/TM
  • 分类号:158-162+168
摘要
雷击是引起输电线路跳闸的主要原因之一。加装线路避雷器是根治输电线路雷击跳闸的有效手段。以福建电网220kV卓旧I路为例,建立了反击计算模型,对比了不同避雷器安装方式对典型杆塔及其相邻杆塔反击耐雷水平和反击跳闸率的影响,得到了线路避雷器的保护作用范围,并据此提出了避雷器安装布点策略:优先考虑连续多基杆塔反击跳闸率为C级或D级的情况,结合线路档距制定不同的安装方案;对于杆塔反击跳闸率为C级和D级,相邻杆塔未达到C级或D级的情况,C级杆塔安装一相避雷器,D级杆塔安装两相避雷器。基于提出的避雷器安装布点策略,以220kV卓旧I路为例,在防雷改造时可减少线路避雷器安装数量,提高线路运行经济性。
        Lightning strike is one of the main reasons causing the tripping of the transmission lines. The installation of line arresters is an effective means to solve lightning strikes on transmission lines. Taking the 220kV Zhuojiu I Road of Fujian Power Grid as an example,a counterattack calculation model is established,counterattack lightning protection performance of the typical tower and its adjacent tower of a220kV transmission line with different line arrester configurations is analyzed and compared,the protection range of the line arrester is obtained and the installation strategy of line arrester is put forward: Priority is given to the case where the continuous multi-base tower counter-attack trip rate is C-class or Dclass,and different installation schemes are established in combination with the line span; for the tower counter-attack trip rate is C-class and D-class,the adjacent tower does not reach C-class or D-class In the case,the C-class tower is equipped with a phase arrester,and the D-class tower is equipped with a two-phase arrester. Based on the proposed installation strategy of the arrester,taking 220kV Zhuoji I as an example,the number of lightning arresters installed can be reduced during lightning protection and the line operation economy can be improved.
引文
[1]王春杰,祝令瑜,汲胜昌,等.高压输电线路和变电站雷电防护的现状与发展[J].电瓷避雷器,2010(3):35-46.WANG Chunjie,ZHU Lingyu,JI Shengchang,et al.Present and development of lightning protection for HV transmission lines and substations[J]. Insulators and Surge Arresters,2010(3):35-46.
    [2]叶会生,何俊佳,李化,等.雷击高压直流线路杆塔时的过电压和闪络仿真研究[J].电网技术,2005,29(21):31-35.YE Huisheng,HE Junjia,LI Hua,et al. Simulation of overvoltage and flashover caused by lightning stroke at towers of HVDC transmission line[J]. Power System Technology,2005,29(21):31-35.
    [3]易辉,崔江流.我国输电线路运行现状及防雷保护[J].高电压技术,2001,27(6):44-45,50.YI Hui,CUI Jiangliu. The present state and lightning protection of transmission line in China[J]. High Voltage Engineering,2001,27(6):44-45,50.
    [4]张志劲,司马文霞,蒋兴良,等.超/特高压输电线路雷电绕击防护性能研究[J].中国电机工程学报,2005,25(10):1-6.ZHANG Zhijin,SIMA Wenxia,JIANG Xingliang,et al.Study on the lightning protection performance of shielding failure for UHV&EHV transmission lines[J]. Proceedings of the Chinese Society for Electrical Engineering,2005,25(10):1-6.
    [5] IEEE Working Group on Estimating Lightning Performance of Transmission Lines. A simplified method for estimating lightning performance of transmission lines[J].IEEE Trans,1985,PAS-104(4):919-932.
    [6]高嵩,周志成,陶风波,等.江苏电网220kV及以上输电线路雷击跳闸分析[J].江苏电机工程,2014,33(4):17-20.GAO Song,ZHOU Zhicheng,TAO Fengbo,etal. Analysis of lightning fault on 220 k V and above transmission lines in Jiangsu power grid[J]. Jiangsu Electrical Engineering,2014,33(4):17-20.
    [7]梁义明,付浩,邵涛.吉林省66 k V及220 k V输电线路防雷措施及应用效果分析[J].电瓷避雷器,2009(5):36-40.LIANG Yiming,FU Hao,SHAO Tao. Analysis of lightning protection measures and application effect at 66 k V and 220 k V transmission lines of Jilin province[J]. Insulators and Surge Arresters,2009(5):36-40.
    [8]任晓娜,吴广宁,付龙海,等.采用避雷器后输电线路仿真模型的建立及应用现状[J].电瓷避雷器,2005(5):26-29.REN Xiaona,WU Guangning,FU Longhai,et al. Research on transmission line system simulation models with line arrester and its application[J]. Insulators and Surge Arresters,2005(5):26-29.
    [9]顾悦,张园,李江涛,等.不同电压等级同塔多回线雷电反击性能研究[J].电瓷避雷器,2015(3):138-142.GU Yue,ZHANG Yuan,LI Jiangtao,et al. Study on the lightning back flashover performance of multi-circuit transmission lines with different operating voltages[J].Insulators and Surge Arresters,2015(3):138-142.
    [10]李百挡,李景禄,朱坤双.山区110 k V线路雷击事故分析及对策[J].电瓷避雷器,2007,215(1):43-46.LI Baidang,LI Jinglu,ZHU Kunshuang. Analysis of the lightning strike fault of 110 k V transmission line in mountainous area and counter measures[J]. Insulators and Surge Arresters,2007,215(1):43-46.
    [11] MORALES J,ZHUNIO L,PATINO C,et al. Induced over voltages produced by atmospheric discharges considering JMarti and Pi distribution lines models[C]. 2014IEEE International Autumn Meeting on Power,Electronics and Computing(ROPEC).[S. l.]:[s. n.],2014.
    [12]王东举,周浩,陈稼苗,等.特高杆塔的多波阻抗模型设计及雷击暂态特性分析[J].电网技术,2007,31(23):11-16.WANG Dongju,ZHOU Hao,CHEN Jiamiao,et al. Design of multi-surge impedance Model for ultra-high transmission Tower and analysis on its transient characteristic caused by lightning stroke[J]. Power System Technology,2007,31(23):11-16.
    [13]刘杰,刘春,周初蕊,等.输电线路杆塔模型研究现状及雷电反击过电压计算[J].电瓷避雷器,2013(6):81-86,90.LIU Jie,LIU Chun,ZHOU Churui,et al. Summary of transmission Tower models and calculation of back flashover lightning overvoltage[J]. Insulators and Surge Arresters,2013(6):81-86,90.
    [14]庞启成,张宇,阮江军.基于先导发展法的绝缘闪络判据的研究[J].广西电力,2006(2):51-53.PANG Qicheng,ZHANG Yu,RUAN Jiangjun. Study on criterion of insulation flashover based on antecedent development method[J]. Guangxi Electric Power,2006(2):51-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700