用户名: 密码: 验证码:
作物育种关键技术发展态势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development of Key Breeding Technology
  • 作者:梁翰文 ; 吕慧颖 ; 葛毅强 ; 魏珣 ; 邓向东 ; 杨维才 ; 田志喜
  • 英文作者:LIANG Han-wen;LV Hui-ying;GE Yi-qiang;WEI Xun;DENG Xiang-dong;YANG Wei-cai;TIAN Zhi-xi;Institute of Genetics and Developmental Biology,Chinese Academy of Sciences/Innovative Academy of Seed Design;China Rural Technology Development Center;
  • 关键词:育种技术 ; 分子设计育种 ; 基因组编辑
  • 英文关键词:breeding technology;;molecular design breeding;;genome editing
  • 中文刊名:ZWYC
  • 英文刊名:Journal of Plant Genetic Resources
  • 机构:中国科学院遗传与发育生物学研究所/种子创新研究院;中国农村技术开发中心;
  • 出版日期:2018-04-17 10:07
  • 出版单位:植物遗传资源学报
  • 年:2018
  • 期:v.19
  • 基金:中国农村技术开发中心“农作物育种行业动态专题研究”项目
  • 语种:中文;
  • 页:ZWYC201803003
  • 页数:9
  • CN:03
  • ISSN:11-4996/S
  • 分类号:18-26
摘要
传统遗传育种方法是建立在有性杂交的基础上,通过遗传重组和表型选择进行新品种选培。随着所用品种遗传多样性逐步减少,传统育种瓶颈效应愈来愈为明显,利用常规育种技术已经很难育成突破性新品种。生物技术的创新极大地推动了现代育种的发展。随着分子生物学、基因组学、系统生物学、合成生物学等学科的发展和生物技术的不断进步,多学科联合催生了设计育种技术的革新。2017年生物技术发展迅猛,各项技术得到了空前的发展,尤其是基因组编辑技术、单倍体育种、分子设计育种技术的发展,正孕育着一场新的育种技术革命。
        Traditional breeding is a method to develop new varieties through genetic recombination and phenotype selection based on sexual hybridization. With the gradual reduction of genetic diversity of the varieties used,the bottleneck of traditional breeding becomes more and more obvious,and it is difficult to develop a breakthrough variety with conventional breeding technology. The innovation of biotechnology has greatly promoted the development of modern breeding. The rapid progress in multiple biological disciplines,including molecular biology,genomics,systems biology and synthetic biology,has led to the innovation of design breeding. In 2017,breeding technology developed rapidly,particularly in genome,haploid breeding and molecular design breeding technology,which will bring a new revolution for breeding technology.
引文
[1]Lu Y M,Zhu J K.Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system[J].Mol Plant,2017,10(3):523-525
    [2]Li J Y,Sun Y W,Du J L,et al.Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J].Mol Plant,2017,10(3):526-529
    [3]Shimatani Z,Kashojiya S,Takayama M,et al.Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J].Nat Biotechnol,2017,35(5):441-443
    [4]Zong Y,Wang Y P,Li C,et al.Precise base editing in rice,wheat and maize with a Cas9-cytidine deaminase fusion[J].Nat Biotechnol,2017,35(5):438-440
    [5]Hu X,Meng X,Liu Q,et al.Increasing the efficiency of CRISPRCas9-VQR precise genome editing in rice[J].Plant Biotechnol J,2018,16(1):292-297
    [6]Wang L J,Xue W,Yan L,et al.Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor.Cell Res,2017,27(10):1289-1292
    [7]Zhang D B,Zhang H W,Li T D,et al.Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity Sp Cas9 nucleases[J].Genome Biol,2017,18:191
    [8]Rodriguez-Leal D,Lemmon Z H,Man J,et al.Engineering quantitative trait variation for crop improvement by genome editing[J].Cell,2017,171(2):470-480
    [9]Li Z X,Zhang D D,Xiong X Y,et al.A potent Cas9-derived gene activator for plant and mammalian cells[J].Nat Plants,2017,3(12):930-936
    [10]Lowder L G,Zhou J,Zhang Y,et al.Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and m TALE-Act systems[J].Mol Plant,2017,https://doi.org/10.1016/j.molp.2017.11.010
    [11]Xie X,Ma X,Zhu Q,et al.CRISPR-GE:A convenient software toolkit for CRISPR-Based genome editing[J].Mol Plant,2017,10(9):1246-1249
    [12]Meng X,Yu H,Zhang Y,et al.Costruction of a g Genome-wide mutant library in rice using CRISPR/Cas9[J].Mol Plant,2017,10(9):1238-1241
    [13]Lu Y M,Ye X,Guo R M,et al.Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system[J].Mol Plant,2017,10(9):1242-1245
    [14]Kelliher T,Starr D,Richbourg L,et al.MATRILINEAL,a spermspecific phospholipase,triggers maize haploid induction[J].Nature,2017,542(7639):105-109
    [15]Liu C X,Li X,Meng D X,et al.A 4-bp Insertion at Zm PLA1 encoding a putative phospholipase A generates haploid induction in maize[J].Mol Plant,2017,10(3):520-522
    [16]Li X,Meng D,Chen S,et al.Singlenucleus sequencing reveals spermatid chromosome fragmentation as a possiblecause of maize haploid induction[J].Nat Commun,2017,doi:10.1038/s41467-017-00969-8
    [17]Zhao X,Meng Z G,Wang Y,et al.Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers[J].Nat Plants,2017,3(12):956-964
    [18]Zeng D L,Tian Z X,Rao Y C,et al.Rational design of high-yield and superior-quality rice[J].Nat Plants,2017,3(4):17031
    [19]Fang C,Ma Y M,Wu S W,et al.Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean[J].Genome Biol,2017,18:161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700