用户名: 密码: 验证码:
基于土壤蓄热的日光温室逆温现象分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Temperature Inversion Phenomenon in Solar Greenhouse Based on Soil Heat Absorption
  • 作者:张传坤 ; 魏珉 ; 徐平丽
  • 英文作者:ZHANG Chuan-kun;WEI Min;XU Ping-li;Vegetable Research Institute, Shandong Academy of Agricultural Sciences;College of Horticulture and Engineering, Shandong Agricultural University;Bio-Tech Research Center, Shandong Academy of Agricultural Sciences;
  • 关键词:土壤温度 ; 温差比例 ; 逆温层 ; 对流层 ; 逆温现象
  • 英文关键词:soil temperature;;temperature difference proportion;;temperature inversion layer;;troposphere;;temperature inversion phenomenon
  • 中文刊名:SYNY
  • 英文刊名:Journal of Shenyang Agricultural University
  • 机构:山东省农业科学院蔬菜花卉研究所;山东农业大学园艺科学与工程学院;山东省农业科学院高新技术研究中心;
  • 出版日期:2019-02-15
  • 出版单位:沈阳农业大学学报
  • 年:2019
  • 期:v.50;No.198
  • 基金:国家大宗蔬菜产业技术体系建设专项项目(CARS-23-04);; “十二五”国家科技支撑计划课题项目(2014BAD05B03);; 山东省农业重大应用技术创新课题鲁财农指项目(〈2015〉16)
  • 语种:中文;
  • 页:SYNY201901016
  • 页数:6
  • CN:01
  • ISSN:21-1134/S
  • 分类号:120-125
摘要
为探究日光温室土壤温度偏低的原因,以传热学对流换热理论为基础,以土壤蓄热温差占温室垂直方向上最大空气温度与地面温度之差的比例(温差比例)为研究对象,针对日光温室垂直方向上的温度分布开展研究。在位于山东泰安的日光温室内,选取温室中部后墙南5.4m,距离地面0,0.1,1.1,2.1,3.1,4.27,4.37m高度处为测点,分别设置温度传感器T1~T7,地面设置热流板H1;选取试验期间土壤蓄热量高、中等、低3天试验数据,对不同高度各测点温度之间的关系进行研究;计算垂直高度上的最高空气温度,计算不同太阳辐射情况下的温差比例。试验数据验证了温室空气温度自下而上逐渐升高,然后逐渐降低;温室空气存在逆温层和对流层,存在逆温现象;逆温层上部空气密度小于下部空气密度,上部高温空气不能流动到地面,逆温层两端温差较大。计算结果表明:不同太阳辐射情况下垂直方向上最大空气温度积分与地面温度积分之差分别为890℃、770℃、175℃,土壤蓄热温差积分分别为310℃、200℃、68℃,温室散热温差积分分别为120℃、20℃、27℃,土壤蓄热时间分别为6h 55min、4h 50min、2h 20min;后墙南5.4m处逆温层、对流层高度分别为0~3.1m、3.1~4.37m;试验期间不同太阳辐射情况下温差比例分别为34.8%、26%、38.9%。结果表明:太阳辐射强度高时土壤蓄热温差和蓄热时间多于太阳辐射强度低时的土壤蓄热温差和蓄热时间;对流层空气产生自然对流,温室热量向温室外部大量散失;逆温现象造成的温差比例偏小是造成土壤总体蓄热量少、土壤温度偏低的主要原因。
        To explore the causes of low soil temperature in solar greenhouse, this article carried out the temperature distribution in the vertical direction with heat transfer convection theory. In the test greenhouse in Tai'an, Shandong, test points were in the middle of the greenhouse 5.4m away from the back wall and were 0m, 0.1m, 1.1m, 2.1m, 3.1m, 4.27 m, 4.37 m above the ground,and were installed temperature sensors T1-T7 on the test points respectively. Heat flow plate H1 was installed on the ground. The experimental data under high, medium and low soil heat-absorbing volume were chosen during the experiment period to study the difference among the temperature of different measuring points, and the maximum air temperature of the vertical direction and the temperature difference proportion under different solar radiation were calculated. The experimental data proved that temperature from bottom to top in vertical direction first increased, then decreased. The greenhouse air was composed of temperature inversion layer and troposphere, the greenhouse air had temperature inversion phenomenon. The air density in top side of temperature inversion layer was less than that of bottom side, high temperature air couldn't flow from top to surface of ground, temperature difference between top and bottom was high. The analysis showed that the differences between the maximum air temperature integral and the surface temperature integral under different solar radiations in the vertical direction were 890 ℃,770℃ and 175℃, respectively. And the temperature difference integrals of the soil heat absorption were 310℃, 200℃, 68℃,respectively. The temperature difference integrals of heat dissipation in greenhouse were 120℃, 20℃ and 27℃, and the timelengths for soil absorbing heat were 6 h 55 min, 4 h 50 min and 2 h 20 min, respectively. Based on the analysis of measured data,the heights of temperature inversion layer and troposphere 5.4 meter south of the back wall were respectively 0-3.01 m and 3.01-4.37 m. During the test period the temperature difference proportions were 34.8%, 26% and 38.9%, respectively, on different heat-absorbing volume. The results showed that the temperature differences of soil heat-absorbing and the time for soil absorbing heat in the high intensity of solar radiation day were more than those of middle and low intensity of solar radiation day. The air in the troposphere produced natural convection, and the greenhouse heat was dissipated to the outside of the greenhouse largely. The low temperature difference proportion caused by temperature inversion phenomenon was the main reason that the soil has insufficient heat-absorbing volume and the soil temperature is low.
引文
[1]任志雨,王秀峰,魏珉,等.不同根区温度对黄瓜幼苗生长及光合参数的影响[J].山东农业大学学报,2003,34(1):64-67.
    [2]闫秋燕,段增强,李汛,等.根区温度对黄瓜生长和土壤养分利用的影响[J].土壤学报,2013,50(4):752-759.
    [3]乔军.内置秸秆反应堆对日光温室土壤温度及黄瓜生长的影响[J].农业科技与装备,2013,11:1-3.
    [4]高青海,王亚坤,陆晓民,等.日光温室土壤定时加温对黄瓜幼苗光合特性的影响[J].生态学杂志,2014,33(10):2664-2669.
    [5]徐川,宋师琳,郑学军,等.夜间根际温度对日光温室草莓生长结果的影响[J].中国果树,2015(4):41-44.
    [6]冯玉龙,刘恩举,孟庆超.根系温度对植物的影响(Ⅱ)——根温对植物代谢的影响[J].东北林业大学学报,1995,23(4):94-99.
    [7]冯玉龙,刘恩举,孙国斌.根系温度对植物的影响(Ⅰ)——根温对植物生长及光合作用的影响[J].东北林业大学学报,1995,23(4):63-69.
    [8] ARANDISH F,SHAHNAZARI A. Soil temperature and maize nitrogen uptake improvement under partial root-zone drying irrigation[J].Pedosophere,2016,26(6):872-886.
    [9] FINER L,RYYPPO A,APHALO P J,et al.Effects of soil temperature on shoot and root growth and nutrient uptake of 5-yearold Norway spruce seedlings[J].Tree Physiology,2005,25(1):115-22.
    [10] LV G H,HU W,KANG Y H.Root water uptake model considering soil temperature[J].Journal of Hydrologic Engineering,2003,18(4):394-400.
    [11] MORAGHAN J T.Effect of soil temperature on response of flax to phosphorus and zinc fertilizers[J].Soil Science,1980,129(5):290-296.
    [12] YASOGA S,CHONG C W,SANTHA S,et al.Effect of short term variation in temperature and water content on the bacterial community in a tropical soil[J].Applied Soil Ecology,2019(107):279-289.
    [13] SOUSSANA J F,LOISEAU P.Effects of elevated CO2,temperature and N fertilization on nitrogen fluxes in a temperate grassland ecosystem[J].Global Change Biology,2000,6(7):953-965.
    [14]李式军,郭世荣.设施园艺学[M].北京:中国农业出版社,2011:30.
    [15]白义奎,迟道才,王铁良,等.日光温室燃池-地中热交换系统加热效果的初步研究[J].中国农业工程学报,2006(22):178-181.
    [16]于威,王铁良,刘文合,等.日光温室地中热水管加温对土壤温度的影响[J].沈阳农业大学学报,2014,45(3):321-325.
    [17]王建辉,刘自强,刘伟,等.地源热泵在育种/育苗温室中的应用试验研究[J].河北省科学院学报,2014,31(3):47-54.
    [18]孙先鹏,邹志荣,赵康,等.太阳能蓄热联合空气源热泵的温室加温试验[J].农业工程学报,2015,31(22):215-221.
    [19]方慧,杨其长,张义.基于热泵的日光温室浅层土壤水媒蓄放热装置试验[J].农业工程学报,2012,28(20):210-216.
    [20]王奉钦,张天柱.太阳能集热器辅助提高日光温室地温的应用研究[D].北京:中国农业大学,2004.
    [21]张守仕,谢克英,石明生,等.根系加温技术对温室观赏桃生长的影响[J].北方园艺,2015(23):61-64.
    [22]王永维,梁喜风,程绍明,等.空气流速对温室地下蓄热系统加温时热湿传递的影响[J].农业机械学报,2012,43(11):180-185,219.
    [23]董蓬,吕全贵,陈青云,等.日光温室地埋管道温度场影响因素研究[J].农机化研究,2015(10):239-244.
    [24]王铁良,李晶晶,李波,等.不同灌溉方式对日光温室土壤温度的影响[J].北方园艺,2009(2):147-149.
    [25]塔娜,五十六,马文娟,等.不同含水率下日光温室土壤温度变化规律的峰拟合法拟合[J].农业工程学报,2014,30(20):204-210.
    [26]孙艳军,徐刚,高文瑞,等.不同畦沟深度对辣椒反季节栽培时土壤温度、水分和辣椒生长的影响[J].江苏农业学报,2014,30(6):1423-1427.
    [27]王立革,焦晓燕,韩雄,等.起垄高度对设施土壤温度、黄瓜根系生长及产量的影响[J].山西农业科学,2015,43(11):1450-1453.
    [28]傅国海,刘文科.日光温室甜椒起垄内嵌式基质栽培根区温度日变化特征[J].中国生态农业学报,2016,24(1):47-55.
    [29]傅国海,杨其长,刘文科.日光温室土垄蓄热保温性能提升的构建参数研究[J].山东农业科学,2015,47(9):42-45.
    [30]赵锦慧,于兴修.气象学与气候学[M].武汉:长江出版社,2014:43-45,6-8.
    [31] BIANCHI A,FAUTRELLE Y,ETAY A.Transferts Thermiques[M].大连:大连理工大学出版社,2008:6.
    [32]张传坤.日光温室空气内循环系统[P].中国专利:ZL201620085784.7,2016.01.28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700