用户名: 密码: 验证码:
还原氧化石墨烯高效吸附双酚F的机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide
  • 作者:张迪 ; 杨迪 ; 徐翠 ; 周日宇 ; 李浩 ; 李靖 ; 王朋
  • 英文作者:ZHANG Di;YANG Di;XU Cui;ZHOU Riyu;LI Hao;LI Jing;WANG Peng;Faculty of Environmental Science and Engineering,Kunming University of Science & Technology;Economic Development Division of Weifang Environmental Protection Bureau;School of Environment and Resource,Southwest University of Science and Technology;
  • 关键词:还原氧化石墨烯 ; 双酚F ; 多层吸附 ; 静电辅助氢键 ; 静电排斥
  • 英文关键词:reduced graphene oxide;;bisphenol F;;multilayer adsorption;;charge-assisted hydrogen bonding;;electrostatic repulsion
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:昆明理工大学环境科学与工程学院;山东省潍坊市环境保护局经济开发区分局;西南科技大学环境与资源学院;
  • 出版日期:2019-03-25
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(41663014;41303093);; 云南省中青年学术和技术带头人后备人才项目(2018HB008);; 国家建设高水平大学公派研究生项目(201708530253)~~
  • 语种:中文;
  • 页:CLDB201906010
  • 页数:6
  • CN:06
  • ISSN:50-1078/TB
  • 分类号:41-46
摘要
本研究关注了还原氧化石墨烯(RGO)对内分泌干扰物双酚F(BPF)的高效吸附机理。与同类碳基吸附剂材料GP和GO相比,RGO显示出作为一种高效吸附剂用于去除废水中BPF的巨大潜力。Freundlich模型能够较好地拟合BPF在RGO表面的吸附等温线,这说明BPF在RGO表面可能发生了多层吸附。热力学研究结果表明,BPF在RGO表面吸附是一个自发的吸热过程。溶液pH值从2.0增加到11.0,RGO对BPF的吸附最开始缓慢增加,pH值超过BPF的pKa1后,吸附容量增加到最大值。BPF发生二次解离后,由于静电排斥作用较强,导致其与RGO的结合作用减弱,从而使吸附效率急剧减小。RGO高效吸附BPF的主要机理为π-π相互作用、疏水作用和静电辅助氢键作用,由于溶液pH值不同,导致各种作用的强弱不同,从而使RGO的吸附能力也存在显著差异。本研究为RGO这类石墨烯碳基吸附剂用于去除水环境中具有可解离性的内分泌干扰物提供了理论依据。
        The mechanism of highly efficient adsorption of endocrine disruptor bisphenol F( BPF) by reduced graphene oxide( RGO) was investigated in this study. Compared with similar carbonaceous adsorbents( such as GP and GO),RGO exhibit great potential as an efficient adsorbent for removing BPF from waste water. The adsorption isotherm of BPF on the surface of RGO can be well fitted by Freundlich model,which indicated the occurrence of multilayer adsorption of BPF on RGO surface. The results of thermodynamic studies showed that the adsorption of BPF on RGO surface was a spontaneous endothermic process. The adsorption capacity of RGO to BPF increased slowly with the increase of solution pH value from 2. 0 to 11. 0. After pH exceeded the p Ka1 of BPF,there was a rapid raise in the adsorption capacity and interaction affinity until the maximum was achieved. Once the secondary dissociation of BPF occurred,the adsorption capacity and affinity of RGO decreased dramatically,due to the strong electrostatic repulsion. The primary mechanism of highly efficient adsorption of BPF by RGO included π-π interaction,hydrophobic interaction and charge-assisted hydrogen bonding. The different pH value of the solution could lead to significant difference in adsorption capacity of RGO to BPF. This study provided a theoretical basis for the new graphene-based adsorbents used for removing dissociable endocrine disruptors in contaminated water.
引文
1 Chang H S,Choo K H,Lee B,et al. Journal of Hazardous Materials,2009, 172, 1.
    2 Hu W Y,Shi G B,Hu D P,et al. Molecular and Cellular Endocrinology,2012,354,63.
    3 Kim S D,Cho J,Kim I S,et al. Water Research,2007,41,1013.
    4 Inoue K,Murayama S,Takeba K,et al. Journal of Food Composition and Analysis,2003,16,497.
    5 Rhind S,Kyle C,Kerr C,et al. Science of the Total Environment,2011,409,3850.
    6 Cabaton N,Dumont C,Severin I,et al. Toxicology,2009,255,15.
    7 Colborn T,Vom Saal F S,Soto A M. Environmental Health Perspectives,1993,101,378.
    8 Rasier G,Toppari J,Parent A S,et al. Molecular and Cellular Endocrino-logy,2006,254,187.
    9 Yamazaki E,Yamashita N,Taniyasu S,et al. Ecotoxicology and Environmental Safety,2015,122,565.
    10 Pan B,Lin D,Mashayekhi H,et al. Environmental Science & Technology,2008,42,5480.
    11 Liu G,Ma J,Li X,et al. Journal of Hazardous Materials,2009,164,1275.
    12 Esplugas S,Bila D M,Krause L G T,et al. Journal of Hazardous Mate-rials,2007,149,631.
    13 Wang R,Ren D,Xia S,et al. Journal of Hazardous Materials,2009,169,926.
    14 El-Naas M H,Al-Muhtaseb S A,Makhlouf S. Journal of Hazardous Materials,2009,164,720.
    15 Hou J,Dong G,Lu B,et al. Bioresource Technology,2014,169,475.
    16 Zhang L,Pan F,Liu X,et al. Chemical Engineering Journal,2013,218,238.
    17 Deng X,Lü L,Li H,et al. Journal of Hazardous Materials,2010,183,923.
    18 Liu T,Li Y,Du Q,et al. Colloids and Surfaces B: Biointerfaces,2012,90,197.
    19 Ramesha G,Kumara A V,Muralidhara H,et al. Journal of Colloid and Interface Science,2011,361,270.
    20 Zhu J,Wei S,Gu H,et al. Environmental Science & Technology,2011,46,977.
    21 Stankovich S,Dikin D A,Dommett G H,et al. Nature,2006,442,282.
    22 Zhou X,Huang X,Qi X,et al. The Journal of Physical Chemistry C,2009,113,10842.
    23 Fan X,Peng W,Li Y,et al. Advanced Materials,2008,20,4490.
    24 Liu P,Huang Y,Wang L. Materials Letters,2013,91,125.
    25 Park S,An J,Potts J R,et al. Carbon,2011,49,3019.
    26 Zhu C,Guo S,Fang Y,et al. ACS Nano,2010,4,2429.
    27 Chen H,Müller M B,Gilmore K J,et al. Advanced Materials,2008,20,3557.
    28 Wang X,Zhi L,Müllen K. Nano Letters,2008,8,323.
    29 Pan B,Xing B. Journal of Soils and Sediments,2010,10,838.
    30 Meyer J C,Geim A K,Katsnelson M I,et al. Nature,2007,446,60.
    31 Lee C,Wei X,Kysar J W,et al. Science,2008,321,385.
    32 Kuo C Y. Desalination,2009,249,976.
    33 Li Y,Zhang P,Du Q,et al. Journal of Colloid and Interface Science,2011,363,348.
    34 Jesus A L,Redinha J. The Journal of Physical Chemistry A,2011,115,14069.
    35 Ni J,Pignatello J J,Xing B. Environmental Science & Technology,2011,45,9240.
    36 Li X,Pignatello J J,Wang Y,et al. Environmental Science & Technology,2013,47,8334.
    37 Bautista-Toledo I,Ferro-Garcia M,Rivera-Utrilla J,et al. Environmental Science & Technology,2005,39,6246.
    38 Wang X L,Shu L,Wang Y Q,et al. Environmental Science & Technology,2011,45,9276.
    39 Pan B,Xing B S. Environmental Science & Technology,2008,42,9005.
    40 Zhang D,Pan B,Wu M,et al. Environmental Pollution,2012,160,178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700