用户名: 密码: 验证码:
果蝇悬飞翅拍动力学问题的建模和数值求解
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling and Numerical Simulation for the Problem of Hovering Wing Beat Dynamics of Fruit Fly
  • 作者:柯希俊 ; 张卫平 ; 蔡雪飞 ; 张正 ; 楼星梁 ; 陈文元
  • 英文作者:KE Xijun;ZHANG Weiping;CAI Xuefei;ZHANG Zheng;LOU Xingliang;CHEN Wenyuan;National Key Laboratory of Science and Technology on Micro/Nano Fabrication,Key Laboratory of Beidou Navigation and Location Service in Shanghai,Key Laboratory for Thin Film and Microfabrication of the Ministry of Education,Department of Micro-Nano Electronics,School of Electronic Information and Electrical Engineering,Shanghai Jiaotong University;Zhiyuan College,Shanghai Jiaotong University;
  • 关键词:改进的准稳态气动力模型 ; 悬飞翅拍动力学 ; 稳态翅拍运动模式 ; 仿昆扑翼微飞行器
  • 英文关键词:modified quasi-steady aerodynamic force model;;wingbeat dynamics during flapping-wing hovering flight;;steady wingbeat pattern;;bio-insect flapping-wing micro aerial vehicle(BioI-FWMAV)
  • 中文刊名:SHJT
  • 英文刊名:Journal of Shanghai Jiaotong University
  • 机构:上海交通大学电子信息与工程学院微纳电子工程系微米/纳米加工技术国防重点实验室上海市北斗导航与位置服务重点实验室薄膜与微细技术教育部重点实验室;上海交通大学致远学院;
  • 出版日期:2016-08-28
  • 出版单位:上海交通大学学报
  • 年:2016
  • 期:v.50;No.366
  • 基金:教育部新世纪优秀人才支持计划项目(NCET 10-0583);; 总装预先研究项目(62501040303);; 总装预先研究基金(9140A26020313JW03371、9140A26020414JW03412)资助
  • 语种:中文;
  • 页:SHJT201608026
  • 页数:10
  • CN:08
  • ISSN:31-1466/U
  • 分类号:171-179+186
摘要
针对悬飞果蝇翅拍动力学问题,基于稳态气动力模型给出了改进的准稳态气动力矩模型,建立了两自由度的非线性翅拍动力学方程,通过假设翅拍运动和翅膀扭转运动可以解耦计算.基于改进的准稳态气动力模型,采用常规常微分方程数值求解算法和边界值数值求解算法分别对已知翅运动的其中一个自由度的翅膀拍打力学方程和翅膀扭转动力学方程进行了求解.数值结果表明,理论预测获得的翅膀运动学模式和实验测试获得的稳态翅拍运动模式有较好一致性.
        The production of unsteady aerodynamic force acting on the wing planform for fruit fly,which indirectly influences the dynamic unsteadiness and controllability of high maneuverability,is directly determined by its wing beat kinematic pattern during flapping-wing hovering flight.The study about the problem of wing beat dynamic during flapping-wing hovering flight of fruit fly was performed.Firstly,the modified quasi-steady aerodynamic estimating model was proposed in terms of the steady aerodynamic force model reported by other researchers by some assumption of simplification.Next,the two DOFs nonlinear dynamic equation of wing beat was developed during flapping-wing hovering flight of fruit fly.Then,in order to realize the numerical solution of two DOFs nonlinear dynamic equation,it was assumed that the stroke motion and pitch motion for steady wing beat could be decoupled.Finally,based on the modified quasi-steady aerodynamic estimating model,the numerical simulations for the dynamic equation of stroke motion and pitch motion of wing were separately executed under the condition of their another presoribed known DOF of wing motion by using common numerical simulation algorithm and numerical solution of boundary-value problem for ODEs,respectively.The results show that the theoretical estimated wing motion pattern is well consistent with those of experimental result.
引文
[1]DICKINSON M H,LEHMANN F-O,SANE S P.Wing rotation and the aerodynamic basis of insect flight[J].Science,1999,284:1954-1960.
    [2]MA K Y,CHIRARATTANANON P,FULLER S B,et al.Controlled flight of a biologically inspired,insect-scale robot[J].Science,2013,340:603-607.
    [3]HINES L,CAMPOLO D,SITTI M.Liftoff of a motor-driven,flapping-wing microaerial vehicle capable of resonance[J].IEEE Transactions on Robotics,2014,30(1):220-232.
    [4]SUN M.Insect flight dynamics:stability and control[J].Reviews of Modern Physics,2014,86:615-646.
    [5]ROLL J A,CHENG B,DENG X.An electromagnetic actuator for high-frequency flapping-wing microair vehicles[J].IEEE Transactions on Robotics,2015,31(2):400-414.
    [6]BERGOU A J,SHENG X,WANG Z J.Passive wing pitch reversal in insect flight[J].Journal of Fluid Mechanics,2007,591:321-337.
    [7]WHITNEY J P,WOOD R J.Aeromechanics of passive rotation in flapping flight[J].Journal of Fluid Mechanics,2010,660(1):197-220.
    [8]ARABAGI V,SITTI M.Simulation and analysis of a passive pitch reversal flapping wing mechanism for an aerial robotic platform[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Nice:IEEE,2008:22-26.
    [9]MUIJRES F T,ELZINGA M J,MELIS J M,et al.Flies evade looming targets by executing rapid visually directed banked turns[J].Science,2014,344:172-177.
    [10]SANE S P,DICKINSON M H.The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight[J].The Journal of Experimental Biology,2002,205:1087-96.
    [11]AONO H,LIANG F,LIU H.Near-and far-field aerodynamics in insect hovering flight:an integrated computational study[J].The Journal of Experimental Biology,2008,211 239-257.
    [12]MENG X G,XU L,SUN M.Aerodynamic effects of corrugation in flapping insect wings in hovering flight[J].The Journal of Experimental Biology,2011,214:432-444.
    [13]ARABAGI V,HINES L,SITTI M.A simulation and design tool for a passive rotation flapping wing mechanism[J].IEEE-ASME Transactions on Mechatronics,2013,18(2):787-798.
    [14]LEHMANN F-O,DICKINSON M H.The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster[J].The Journal of Experimental Biology,1997,200:1133-1143.
    [15]SUN M,TANG J.Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J].The Journal of Experimental Biology,2002,205:55-70.
    [16]SUN M,TANG J.Lift and power requirements of hovering flight in Drosophila virilis[J].The Journal of Experimental Biology,2002,205:2413-2427.
    [17]ELLINGTON C P.The aerodynamics of hovering insect flight.II.morphological parameters[J].Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,1984,305:17-40.
    [18]BIRCH J M,DICKSON W B,DICKINSON M H.Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers[J].The Journal of Experimental Biology,2004,207:1063-1072.
    [19]SANE S P,DICKINSON M H.The control of flight force by a flapping wing:lift and drag production[J].The Journal of Experimental Biology,2001,204:2607-2626.
    [20]BERMAN G J,WANG Z J.Energy-minimizing kinematics in hovering insect flight[J].Journal of Fluid Mechanics,2007,582:153-168.
    [21]ELLINGTON C P.The aerodynamics of hovering insect flight.IV.aeorodynamic mechanisms[J].Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,1984,305:79-113.
    [22]ANDERSEN A,PESAVENTO U,WANG Z J.Analysis of transitions between fluttering,tumbling and steady descent of falling cards[J].Journal of Fluid Mechanics,2005,541:91-104.
    [23]ANDERSEN A,PESAVENTO U,WANG Z J.Unsteady aerodynamics of fluttering and tumbling plates[J].Journal of Fluid Mechanics,2005,541:65-90.
    [24]SEDOV L I.An introduction to the theory of aeroelasticity[M].New York:Interscience Publishers,1965.
    [25]FRY S N,SAYAMAN R,DICKINSON M H.The aerodynamics of hovering flight in Drosophila[J].The Journal of Experimental Biology,2005,208:2303-2318.
    [26]DICKSON W B,STRAW A D,POELMA C,et al.An integrative model of insect flight control[C]//44th AIAA Aerospace Sciences Meeting and Exhibit.Reno:American Institute of Aeronautics and Astronautics,2006:1-19.
    [27]DICKSON W B,STRAW A D,DICKINSON M H.Integrative model of drosophila flight[J].AIAA Journal,2008,46(9):2150-2164.
    [28]WALKER J A.Rotational lift:something different or more of the same?[J].The Journal of Experimental Biology,2002,205:3783-3792.
    [29]邹才均,张卫平,柯希俊,等.仿昆扑翼微飞行器中高效传动铰链的研究[J].上海交通大学学报,2014,48(3):439-444.ZOU Caijun,ZHANG Weiping,KE Xijun,et al.Efficient flexures for insect-like flapping-wing micro aerial vehicle[J].Journal of Shanghai Jiaotong University,2014,48(3):439-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700