用户名: 密码: 验证码:
基于基团贡献法和分子动力学预测聚间苯二甲酰对苯二胺的玻璃化转变温度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Using Group Contribution Method and Molecular Dynamics to Predict the Glass Transition Temperature of Poly( p-phenylene isophthalamide)
  • 作者:吴红枚 ; 李惠婷 ; 李永成 ; 王宏青 ; 王孟
  • 英文作者:WU Hongmei;LI Huiting;LI Yongcheng;WANG Hongqing;WANG Meng;Department of Polymer Science and Engineering,College of Chemistry and Chemical Engineering,University of South China;
  • 关键词:基团贡献法 ; 分子动力学模拟 ; 玻璃化转变温度 ; 聚间苯二甲酰对苯二胺
  • 英文关键词:Group contribution method;;Molecular dynamics simulation;;Glass transition temperature;;Poly(p-phenylene isophthalamide)
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:南华大学化学化工学院高分子材料与工程系;
  • 出版日期:2019-01-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(批准号:21104031);; 南华大学研究生科学基金(批准号:2018KYY046)资助~~
  • 语种:中文;
  • 页:GDXH201901026
  • 页数:7
  • CN:01
  • ISSN:22-1131/O6
  • 分类号:188-194
摘要
采用基团贡献法(GC)和分子动力学法(MD)模拟了聚间苯二甲酰间苯二胺纤维(MPDI)和聚对苯二甲酰对苯二胺(PPTA)的玻璃化转变温度,并与实验值进行了对比.结果表明,使用基团贡献法和分子动力学法测得的MPDI和PPTA的玻璃化转变温度与实验值接近,说明基团贡献法和分子动力学法可以用来预测芳香族聚酰胺的玻璃化转变温度.在此基础上,采用GC和MD预测了聚间苯二甲酰对苯二胺(PPIA)的玻璃化转变温度.在MD模拟中,对密度、比体积、回转半径和非键相互作用随温度的变化规律进行了分析.结果表明,自由体积理论能较好地解释PPIA的玻璃化转变现象,其中非键相互作用随温度的变化是玻璃化转变的本质原因. PPIA的玻璃化转变温度介于MPDI和PPTA之间,有望成为综合性能介于两者之间的另一种高性能聚酰胺.
        Aramid fibers mainly include wholly aromatic polyamide and heterocyclic aromatic polyamide,while the wholly aromatic polyamides( aramids) are considered to be high-performance organic materials due to their outstanding thermal and mechanical properties. Their high-performances arise from their aromatic structure and amide linkages. The better known commercial aramids,poly( p-phenylene terephthalamide)( PPTA)and poly( m-phenylene isophthalamide)( MPDI),are used in advanced technologies and have been transformed into high-strength and flame-retardant fibers and coatings,with applications in the aerospace and armament industry. Poly( p-phenylene isophthalamide)( PPIA),a new aromatic polyamide,has not yet been commercialized and there are few reports about its comprehensive performance until nowadays. In this paper,Group Contribution( GC) method and molecular dynamics( MD) simulation were used to simulate the glass transition temperatures( Tg) of MPDI and PPTA. Then analysis and comparisons of the glass transition temperatures by GC method and MD simulation with their experimental values are presented. The results show that the glass transition temperature measured by GC method and MD simulation is very close to the experimental value,and that the change of the density,specific volume,radius of gyration and energy along with temperature can cha-racterize the glass transition temperature. Then these two methods were exploited to simulate the Tgof PPIA. The change of the density,specific volume,radius of gyration and energy interactions along with temperature were analyzed in the MD simulation. The results show that the free volume theory can explain the glass transition phenomenon of PPIA,and the change of the non-bond energy interactions with temperature is the essential reason. These results indicates that PPIA has the potential to become another high performance polyamide with its Tglying between those of both MPDI and PPTA. It is of great significance to emphasize on the synthesis of PPIA with sufficiently high molecular weight. In general,the group contribution method and molecular dynamics simulation can predict the Tgof aromatic polyamide sucessfully,and they can contribute to a deeper understanding on the glass transition phenomenon of aromatic polyamides and the molecular motion behind.
引文
[1] Zhang R.,He X. R.,Yu H.,Polymer Materials Science&Engineering,2015,31(4),186—190(张睿,何显儒,余慧.高分子材料科学与工程,2015,31(4),186—190)
    [2] Diego J. A.,Canadas J.,Mudarra M.,Belana J.,Polymer,2000,40(40),5355—5363
    [3] Roe R. J.,MD Simulation Study of Glass Transition and Short Time Dynamics in Polymer Liquids. In:Atomistic Modeling of Physical Properties,Ed.:Monnerie L.,Suter U. W.,Springer-Verlag,Berlin Heidelberg,1994,116(1),415—426
    [4] Han J.,Gee R. H.,Boyd R. H.,Macromolecules,1994,27(26),7781—7784
    [5] Boudouris D.,Constantinou L.,Panayiotou C.,Fluid Phase Equilibria,2000,167(1),1—19
    [6] Wang Y. H.,Wang W. H.,Zhang Z. Q.,Xu L. C.,Li P.,European Polymer Journal,2016,75,36—45
    [7] Cousin T.,Galy J.,Dupuy J.,Polymer,2012,53(15),3203—3210
    [8] García J. M.,García F. C.,Serna F.,Pe1a J. L. D. L.,Progress in Polymer Science,2010,35(5),623—686
    [9] Kakida H.,Chatani Y.,Tadokoro H.,Journal of Polymer Science Polymer Physics Edition,1976,14(3),427—435
    [10] Northolt M. G.,van Aartsen J. J.,Journal of Polymer Science Part C Polymer Letters,1973,11(11),333—337
    [11] Bicerano J.,Encyclopedia of Polymer Science and Technology,2006,655—678
    [12] Yang Z.,Study on The Polycondensation and Spinning Process of Poly(p-phenyleneterephthalamide)Copolymer,Donghua University,Shanghai,2006(杨拯.聚对苯二甲酰对苯二胺(PPTA)及其共聚物的聚合及纺丝工艺研究,上海:东华大学,2006)
    [13] Van Krevelen D. W.,Hoftyzer P.,Journal of Applied Polymer Science,1969,13(13),871—881
    [14] Pant P. V. K.,Han J.,Smith G. D.,Boyd R. H.,Journal of Chemical Physics,1993,99(1),597—604
    [15] Abu-Sharkh B. F.,Computational&Theoretical Polymer Science,2001,11(1),29—34
    [16] Sarangapani R.,Reddy S. T.,Sikder A. K.,Journal of Molecular Graphics&Modelling,2015,57,114
    [17] Rigby D.,Sun H.,Eichinger B. E.,Polymer International,2015,44(3),311—330
    [18] Sun H.,Journal of Physical Chemistry B,1998,102(38),7338—7364
    [19] Sacristan J.,Mijangos C.,Macromolecules,2010,43(17),7357—7367
    [20] Gee R. H.,And L. E. F.,Cook R. C.,Macromolecules,2001,34(9),3050—3059
    [21] Ahmadi A.,Freire J. J.,Polymer,2009,50(20),4973—4978
    [22] Chang K. S.,Huang Y. H.,Lee K. R.,Tung K. L.,Journal of Membrane Science,2010,354(1),93—100
    [23] Fermeglia M.,Ferrone M.,Pricl S.,Fluid Phase Equilibria,2003,212(1/2),315—329
    [24] Ding Y.,Wu H. M.,Wang M.,Liang Z. H.,Li Y. C.,Journal of Shandong Chemical Industry,2016,45(11),74—77(丁勇,吴红枚,王孟,梁振辉,李永成.山东化工,2016,45(11),74—77)
    [25] Fu Y. Z.,Liu Y. Q.,Zhang L. Y.,Lan Y. H.,Journal of Molecular Science,2009,25(1),1—4(付一政,刘亚青,张丽燕,兰艳花.分子科学学报,2009,25(1),1—4)
    [26] Fu Y. Z.,Liu Y. Q.,Lan Y. H.,Polymer Materials Science&Engineering,2009,25(10),53—56(付一政,刘亚青,兰艳花.高分子材料科学与工程,2009,25(10),53—56)
    [27] White R. P.,Lipson J. E. G.,Macromolecules,2016,49(11),3987—4007
    [28] White R. P.,Lipson J. E. G.,ACS Macro. Letters,2015,4(5),588—592

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700