用户名: 密码: 验证码:
转化生长因子β1基因沉默内皮祖细胞移植抑制大鼠肺纤维化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transplantation of endothelial progenitor cells with RNA interference targeting transforming growth factor beta1 inhibits pulmonary fibrosis in rats
  • 作者:彭秋凤 ; 高静珍 ; 叶奎 ; 邢爱民
  • 英文作者:Peng Qiufeng;Gao Jingzhen;Ye Kui;Xing Aimin;Second Department of Pneumology, Tianjin 4th Central Hospital;Department of Vascular Surgery, Tianjin 4th Central Hospital;
  • 关键词:肺纤维化 ; 内皮细胞 ; 基因沉默 ; 转化生长因子β1 ; Smad2蛋白质 ; Smad7蛋白质 ; 组织工程 ; 内皮祖细胞 ; Smad-2 ; Smad-7 ; 干细胞
  • 英文关键词:,Pulmonary Fibrosis;;Endothelial Cells;;Gene Silencing;;Transforming Growth Factor beta1;;Smad2 Protein;;Smad7 Protein;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:天津市第四中心医院呼吸2科;天津市第四中心医院血管外科;
  • 出版日期:2018-12-03
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.858
  • 语种:中文;
  • 页:XDKF201901018
  • 页数:6
  • CN:01
  • ISSN:21-1581/R
  • 分类号:96-101
摘要
背景:大量动物实验证明转化生长因子β1基因是目前肺纤维化的研究热点和重要的药物作用靶点。目的:探讨转化生长因子β1基因沉默内皮祖细胞移植对大鼠肺纤维化的影响。方法:(1)构建靶向转化生长因子β1的siRNA质粒,转染内皮祖细胞,分为空白组、对照组及转化生长因子β1基因沉默组,Western blot检测转染第3天和第28天转化生长因子β1表达;(2)80只Wistar大鼠(北京维通利华动物实验技术有限公司提供)分为正常对照组、肺纤维化模型组、内皮祖细胞组、转化生长因子β1沉默内皮祖细胞组,后3组大鼠气管内分别一次性注入0.3m L博莱霉素溶液(5mg/kg)以制备大鼠肺纤维化病理模型,造模后24 h,正常对照组和肺纤维化模型组大鼠尾静脉注射20μL生理盐水,内皮祖细胞组及转化生长因子β1沉默组大鼠尾静脉注射20μL细胞浓度为3×106 L-1的内皮祖细胞悬液或转化生长因子β1沉默内皮祖细胞悬液;(3)移植28d后,ELISA测定大鼠支气管肺泡灌洗液中白细胞介素10、白细胞介素6以及肿瘤坏死因子α水平,苏木精-伊红染色观察肺组织病理变化,RT-PCR、Western blot检测肺组织中转化生长因子β1及Smad-2、Smad-7的表达。结果与结论:(1)在转染后第3天和第28天,转化生长因子β1基因沉默组的转化生长因子β1蛋白相对表达水平低于空白组和对照组,差异有显著性意义(P <0.05);(2)内皮祖细胞组较肺纤维化模型组病理变化减轻,肺泡间隔厚度低,转化生长因子β1沉默内皮祖细胞组病理变化进一步减轻;(3)内皮祖细胞组白细胞介素10、白细胞介素6以及肿瘤坏死因子α水平较肺纤维化模型组降低(P <0.05),转化生长因子β1沉默内皮祖细胞组进一步降低,但与内皮祖细胞组比较,差异无显著性意义(P> 0.05);(4)与肺纤维化模型组相比,内皮祖细胞组和转化生长因子β1沉默组大鼠肺组织中转化生长因子β1和Smad-2的基因和蛋白表达水平明显降低(P <0.05),而Smad-7表达水平明显升高(P <0.05)。转化生长因子β1沉默内皮祖细胞组上述3种基因和蛋白表达水平均优于内皮祖细胞组(P <0.05);(5)结果表明,转化生长因子β1沉默内皮祖细胞移植对肺纤维化大鼠有保护作用,可能通过降低Smad-2及增强Smad-7表达,发挥抑制肺纤维化作用。
        BACKGROUND: Abundant animal experiments have shown that transforming growth factor β1(TGF-β1) gene is a hotspot of pulmonary fibrosis and an important target for drugs. OBJECTIVE: To explore the therapeutic effect of the transplantation of endothelial progenitor cells with RNA interference targeting TGF-β1 in the rats with pulmonary fibrosis. METHODS:(1) The siRNA plasmid directed to TGF-β1 was constructed and transfected into endothelial progenitor cells. It was divided into blank group, control group and TGF-β1-siRNA transfection group. The expression of TGF-β1 at 3 and 28 days after transfection was detected by western blot assay.(2) Eighty Wistar rats provided by Beijing Vital River Laboratory Animal Technology Co. Ltd. were divided into control, model, endothelial progenitor cell, and TGF-β1 silent groups. The rat trachea in the latter three groups was injected with 0.3 mL of bleomycin(5 mg/kg) to establish the rat model of pulmonary fibrosis. At 24 hours after modeling, the control and model groups received the injection of 20 μL of normal saline via caudal vein, and the endothelial progenitor cell, and TGF-β1 silent groups subjected to the injection of 20 μL 3×106/L endothelial progenitor cell suspension and TGF-β1 silent endothelial progenitor cell suspension, respectively.(3) After 28 days of transplantation, the levels of interleukin-10, interleukin-6, and tumor necrosis factor-α in the rat bronchoalveolar lavage fluid were detected by ELISA. The pathological changes of lung tissue were observed by hematoxylin-eosin staining. Expression levels of TGF-β1, Smad-2, and Smad-7 were detected by RT-PCR, and western blot assay. RESULTS AND CONCLUSION:(1) The protein expression of TGF-β1 in the TGF-β1-siRNA transfection group was significantly lower than that in the blank and control groups at 3 and 28 days after transfection(P < 0.05).(2) Compared with the model group, the pulmonary fibrosis was relieved in the endothelial progenitor cell group with reduced alveolar interval thickness and further attenuated in the TGF-β1 silent group.(3) The levels of interleukin-10, interleukin-6, and tumor necrosis factor-α in the endothelial progenitor cell group were significantly lower than those in the model group(P < 0.05). These factor levels in the TGF-β1 silent group were lower than those in the endothelial progenitor cell group(P > 0.05).(4) Compared with the model group, the mRNA and protein expression levels of TGF-β1 and Smad-2 in the endothelial progenitor cell and TGF-β1 silent groups were significantly decreased, the levels of Smad-7 were significantly increased(both P < 0.05). All above levels in the TGF-β1 silent group were significantly superior to those in the endothelial progenitor cell group(P < 0.05).(5) To conclude, TGF-β1 silent endothelial progenitor cell transplantation has a protective effect against pulmonary fibrosis in rats and probably inhibits pulmonary fibrosis by reducing Smad-2 and enhancing Smad-7 expression.
引文
[1]魏燕华,刘桂桃.肺纤维化的治疗进展[J].临床肺科杂志, 2014,19(2):336-339.
    [2]Kumagai S, Marumo S, Yamanashi K, et al. Prognostic significance of combined pulmonary fibrosis and emphysema in patients with resected non-small-cell lung cancer:a retrospective cohort study. Eur J Cardiothorac Surg. 2014;46(6):e113-119.
    [3]何爱明,金美芳,叶瑞洪.肺成纤维细胞在博来霉素致肺纤维化中的作用机制[J].心肺血管病杂志,2015,34(11):863-866.
    [4]Pan Y, Fu H, Kong Q, et al. Prevention of pulmonary fibrosis with salvianolic acid a by inducing fibroblast cell cycle arrest and promoting apoptosis. J Ethnopharmacol. 2014;155(3):1589-1596.
    [5]肖梦.姜黄素对肺纤维化大鼠内皮祖细胞的影响[D].重庆:重庆医科大学,2015.
    [6]陈玉凤.骨髓间充质干细胞对百草枯中毒导致肺纤维化的影响及机制[D].福州:福建医科大学,2015.
    [7]刘哲,张晓梅,尹婷,等.肺纤方提取物干预肺纤维化模型大鼠肺微血管内皮细胞新生血管形成的体外研究[J].北京中医药大学学报, 2015,38(4):233-235.
    [8]刘哲,张晓梅,秦慧慧,等.肺纤方提取物干预肺纤维化模型大鼠微血管内皮细胞黏附及游走迁移作用研究[J].中华中医药杂志, 2015,30(11):4042-4044.
    [9]Mahmoudi T, Fathi F, Rezaei MJ, et al. Transgenic Mice Bone Marrow-Derived Mesenchymal Stem Cells Attenuate Bleomycin-Induced Pulmonary Fibrosis. International Congress of Immunology&Allergy of Iran, 2016.
    [10]Zhou MI, Chen DL, Jiang T, et al. Effects of bone marrow-derived mesenchymal stem cells transfected with survivin on pulmonary fibrosis in mice. Exp Ther Med. 2015;10(5):1857-1864.
    [11]Fikry EM, Safar MM, Hasan WA, et al. Bone Marrow and Adipose-Derived Mesenchymal Stem Cells Alleviate Methotrexate-Induced Pulmonary Fibrosis in Rat:Comparison with Dexamethasone. J Biochem Mol Toxicol. 2015;29(7):321-329.
    [12]龚如.内皮祖细胞在缺血性脑血管疾病治疗中的研究进展[J].国际神经病学神经外科学杂志,2014,41(2):130-133.
    [13]李文华,张群辉,戎浩,等.内皮祖细胞与高血压病的应用研究进展[J].中国组织工程研究,2016,20(15):2273-2280.
    [14]毛梅,王健瑜,汪丽,等.内皮祖细胞对急性损伤肺组织的抗炎作用[J].第三军医大学学报,2015,37(24):2444-2447.
    [15]Li C, Wilson PB, Levine E, et al. TGF-beta1 levels in pre-treatment plasma identify breast cancer patients at risk of developing post-radiotherapy fibrosis. Int J Cancer. 1999;84(2):155-159.
    [16]Lu C, Zhang J, Zhang D, et al. EPCs in vascular repair:how can we clear the hurdles between bench and bedside. Front Biosci(Landmark Ed). 2014;19:34-48.
    [17]Rurali E, Bassetti B, Perrucci GL, et al. BM ageing:Implication for cell therapy with EPCs. Mech Ageing Dev. 2016;159:4-13.
    [18]Chong MS, Ng WK, Chan JK. Concise Review:Endothelial Progenitor Cells in Regenerative Medicine:Applications and Challenges. Stem Cells Transl Med. 2016;5(4):530-538.
    [19]Sun K, Zhou Z, Ju X, et al. Combined transplantation of mesenchymal stem cells and endothelial progenitor cells for tissue engineering:a systematic review and meta-analysis. Stem Cell Res Ther. 2016;7(1):151.
    [20]Salmina AB, Morgun AV, Kuvacheva NV, et al. Endothelial progenitor cells in cerebral endothelium development and repair(review).Sovremennye Tehnologii. 2015;6(4):213-221.
    [21]Ikutomi M, Sahara M, Nakajima T, et al. Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation. J Mol Cell Cardiol. 2015;86:121-135.
    [22]Doyle MF, Tracy RP, Parikh MA, et al. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema. PLoS One.2017;12(3):e0173446.
    [23]Xu BJ, Chen J, Chen X, et al. High shear stress-induced pulmonary hypertension alleviated by endothelial progenitor cells independent of autophagy. World J Pediatr. 2015;11(2):171-176.
    [24]孙宏,刘显东,吕迪宇,等.转化生长因子-β/Smad信号通路对急性肺损伤小鼠免疫平衡的影响[J].中华危重病急救医学, 2016,28(11):967-972.
    [25]Ji H, Li Y, Jiang F, et al. Inhibition of transforming growth factor beta/SMAD signal by MiR-155 is involved in arsenic trioxide-induced anti-angiogenesis in prostate cancer. Cancer Sci. 2014;105(12):1541-1549.
    [26]顾刘宝,卞茸文,涂玥,等.虫草素调控e IF2α/TGF-β/Smad信号通路改善肾间质纤维化的机制[J].中国中药杂志, 2014,39(21):4096-4101.
    [27]邵笑,祝骥,赵峻峰,等.丹参酮ⅡA对大鼠肺纤维化细胞TGF-β1/Smads信号通路的影响[J].浙江中西医结合杂志, 2016,26(5):414-417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700