用户名: 密码: 验证码:
旋转超声磨削加工技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Status of Rotary Ultrasonic Assisted Grinding Technology
  • 作者:朱旭 ; 陈宏堃 ; 陈剑彬 ; 沈剑云
  • 英文作者:ZHU Xu;CHEN Hongkun;CHEN Jianbin;SHEN Jianyun;College of Mechanical Engineering and Automation,Huaqiao University;
  • 关键词:旋转超声磨削 ; 硬脆性材料 ; 加工装备
  • 英文关键词:RUAG;;hard and brittle materials;;equipment
  • 中文刊名:DJGU
  • 英文刊名:Electromachining & Mould
  • 机构:华侨大学机电及自动化学院;
  • 出版日期:2018-04-01
  • 出版单位:电加工与模具
  • 年:2018
  • 期:No.338
  • 语种:中文;
  • 页:DJGU2018S1003
  • 页数:6
  • CN:S1
  • ISSN:32-1589/TH
  • 分类号:12-17
摘要
旋转超声磨削加工是一种通过将金刚石砂轮复合超声频振动,从而提高对硬脆材料加工能力的特种加工方式,相比于传统磨削具有切削力小、切削热低等特点,已成功应用到光学玻璃、陶瓷及其复合材料的加工生产中。在简要概述了旋转超声磨削的基本原理和发展历程的基础上,主要总结了国内外学者及企业对旋转超声磨削加工装备的研究成果,并对未来旋转超声磨削的研究趋势进行展望。
        Rotary ultrasonic assisted grinding(RUAG) combines diamond grinding with ultrasonic tool vibration,to improve machining processes of hard and brittle materials. RUAG enjoys such advantages as less cutting force and less cutting heat,it has been successfully applied to the machining of many brittle materials from optical glasses to ceramics as well as ceramic composites. The emphasis of this review paper was on RUAG equipment researched by domestic and foreign scholars as well as enterprises,and the future of the RUAG was prospected.
引文
[1]曹凤国.超声加工[M].北京:化学工业出版社,2014.
    [2]THOEA T B,ASPINWALL D K,WISEB M L H.Review on ultrasonic machining[J].International Journal of Machine Tools and Manufacture,1988,38(4):239-255.
    [3]ROZENBERG L D.Ultrasonic cutting[M].London:Springer,1964.
    [4]PEI Z J,KHANA N,FERRIA P M.Rotary ultrasonic machining of structural ceramics-A review[J].Ceramic Engineering and Science Proceedings,1995,16(1):259-278.
    [5]UHIMANN E,SPUR G.Surface formation in feed grinding of advanced ceramics with and without ultrasonic assistance[J].Annals of the CIRP,1998,47(1):249-252.
    [6]PEI Z J,PRABHAKAR D,FERREIRA P M,et al.A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining[J].Journal of Engineering for Industry,1995,117(2):142-151.
    [7]郑书友.旋转超声加工机床的研制及实验研究[D].泉州:华侨大学,2008.
    [8]戴向国,傅水根,王先逵.旋转超声加工机床的研究[J].中国机械工程,2003,14(4):289-292.
    [9]董颖怀,张晓锋,房丰洲,等.硬脆材料超声辅助复合加工机床及其工艺研究[J].华中科技大学学报(自然科学版),2012,40(S2):113-116.
    [10]康仁科,马付建,董志刚,等.难加工材料超声辅助切削加工技术[J].航空制造技术,2012(16):44-49.
    [11]黄帅,刘新,瞿娇娇,等.多功能旋转超声加工装置的设计与优化[J].电加工与模具,2013(5):40-43.
    [12]冯平法,蔡万宠,郁鼎文,等.超磁致伸缩超声振子和压电超声振子振幅稳定性研究[C]//第16届全国特种加工学术会议论文集(下).厦门,2015:358-365.
    [13]CAI Wanchong,ZHANG Jianfu,FENG Pingfa,et al.A bilateral capacitance compensation method for giant magnetostriction ultrasonic processing system[J].International Journal of Advanced Manufacturing Technology,2016:1-9.
    [14]初永臣.稀土超磁致伸缩超声振动强化系统的研制与试验研究[D].北京:北京交通大学,2015.
    [15]CAI Wanchong,FENG Pingfa,ZHANG Jianfu,et al.Effect of temperature on the performance of a giant magnetostrictive ultrasonic transducer[J].Journal of Vibroengineering,2016,18(2):1307-1318.
    [16]杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000.
    [17]沈剑云,陈剑彬,王江全,等.径向超声锯切系统的实现及其应用探索[J].机械工程学报,2017,53(17):202-208.
    [18]李战慧,吴运新,隆志力.超声换能器接触界面的非线性谐波[J].振动与冲击,2010,29(9):138-141.
    [19]王福军.引线键合高频超声换能器的设计和键合头运动控制研究[D].天津:天津大学,2009.
    [20]戴向国,谷诤巍,傅水根,等.变幅杆连接结构对超声能量传递效果的影响[J].清华大学学报,2004,44(2):160-162.
    [21]李光辉.硬脆材料旋转超声加工刀具磨损状态监测技术研究[D].哈尔滨:哈尔滨工业大学,2016.
    [22]赵春阳,宫虎,房丰洲.旋转超声磨削硬质合金的表面质量实验研究[J].机械科学与技术,2012,31(10):1584-1587.
    [23]陈玉荣,苏宏华,傅玉灿,等.超声振动辅助磨削Si C陶瓷的加工表面粗糙度研压究[C]//2016年全国超声加工技术研讨会论文集.大连,2016:206-210.
    [24]刘运凤,荆君涛,李占杰.旋转超声磨削加工中刀具结合剂类型与加工性能的关系[J].光学精密工程,2012,20(9):2021-2028.
    [25]梁志强,田梦,王秋燕,等.超声辅助磨削陶瓷材料的裂纹产生与扩展仿真研究[J].兵工学报,2016,37(5):895-902.
    [26]刘树良,陈涛,魏宇祥,等.旋转超声振动端面磨削CFRP表面质量研究[J].航空制造技术,2016(15):57-61.
    [27]丁凯,傅玉灿,等.基于单颗磨粒磨削的超声振动参数与磨削参数匹配性研究[C]//2016年全国超声加工技术研讨会论文集.大连,2015:1-7.
    [28]吕东喜.硬脆材料旋转超声加工高频振动效应的研究[D].哈尔滨:哈尔滨工业大学,2014.
    [29]吴雁,孙爱国,赵波,等.Al2O3/Zr O2(n)微-纳米复合陶瓷超声振动精密磨削表面微观特征试验研究[J].航空学报,2007,28(4):1009-1013.
    [30]梁志强,王西彬,吴勇波,等.垂直于工件平面的二维超声振动辅助磨削单晶硅表面形成机制的试验研究[J].机械工程学报,2010,46(19):171-176.
    [31]赵波,赵斌斌,范凯洋,等.垂直平面内二维超声振动铣削系统稳定性研究[J].振动、测试与诊断,2017,37(3):617-621.
    [32]LIU C S,ZHANG D G,JIAO F,et al.Study on ultrasonic grinding temperature field characteristics of structure ceramics[C]//Proc 8th International Conference on Progress of Machining Technology.2006,11:413-416.
    [33]CHURI N.Rotary ultrasonic machining of hard-tomachine materials[D].Manhattan:Kansas State University,2010.
    [34]KUMAR J.Ultrasonic machining-a comprehensive review[J].Machining Science and Technology,2013,17(3):325-379.
    [35]WEI Shiliang,ZHAO Hong,JING Juntao,et al.Investigation on surface micro-crack evaluation of engineering ceramics by rotary ultrasonic grinding machining[J].The International Journal of Advanced Manufacturing Technology,2015,81(1-4):483-492.
    [36]CONG W L,FENG Quanke,PEI Z J,et al.Edge chipping in rotary ultrasonic machining of silicon[J].International Journal of Manufacturing Research,2012,7(3):311-329.
    [37]董志刚,段佳冬,康仁科,等.超声辅助磨削硬脆材料芯棒直径预测模型[J].光学精密工程,2017,25(8):2106-2112.
    [38]唐进元,周伟华,黄于林.轴向超声振动辅助磨削的磨削力建模[J].机械工程学报,2016,52(15):184-191.
    [39]荆君涛,冯平法,魏士亮,等.Si3N4陶瓷旋转超声磨削加工的表面摩擦特性[J].光学精密工程,2015,23(11):3200-3210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700