用户名: 密码: 验证码:
超声磨削表面三维形貌建模与试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:3D Surface Topography Modeling and Research for Ultrasonic Grinding
  • 作者:李虎 ; 陆忠东
  • 英文作者:LI Hu;LU Zhongdong;School of Mechanical Engineering,University of Shanghai for Science and Technology;Shanghai Dianji University;
  • 关键词:磨粒运动轨迹 ; 切削过程模型 ; 超声磨削 ; 表面三维形貌 ; 试验研究
  • 英文关键词:abrasive trajectory;;cutting process model;;ultrasonic grinding;;3D surface topography;;experimental research
  • 中文刊名:DZKK
  • 英文刊名:Electronic Science and Technology
  • 机构:上海理工大学机械工程学院;上海电机学院;
  • 出版日期:2018-03-15
  • 出版单位:电子科技
  • 年:2018
  • 期:v.31;No.342
  • 语种:中文;
  • 页:DZKK201803016
  • 页数:5
  • CN:03
  • ISSN:61-1291/TN
  • 分类号:60-64
摘要
为了研究超声磨削的工件三维形貌,建立了砂轮表面三维形貌,通过对超声磨削磨粒运动轨迹分析,建立了磨粒在工件表面的切削过程模型。提出了大量随机分布磨粒切削工件路径的离散算法和最小高度值包络曲面提取算法,实现了超声磨削表面三维形貌的建立。进行超声磨削试验,结果表明:该模型能有效预测超声磨削的表面形貌,为超声磨削的工艺优化提供了理论依据。
        In order to research the 3 d topography of ultrasonic grinding workpiece,3 d topography of grinding wheel surface is established. Through analyzing ultrasonic grinding grain trajectory,model of grinding grain workpiece surface cutting process was established. Put forward the path of a large number of random distribution of abrasive cutting workpiece discrete algorithm and minimum height value envelope surface extraction algorithm,implements the establishment of ultrasonic grinding 3 d surface topography.,Results of ultrasonic vibration experiment show that the model can effectively predict the surface morphology of ultrasonic grinding,and provides theory basis for ultrasonic grinding process optimization.
引文
[1]郭东明,孙玉文,贾振元.高性能精密制造方法及其研究进展[J].机械工程学报,2014,50(11):119-134.
    [2]张洪丽.超声振动辅助磨削技术及机理研究[D].济南:山东大学,2007.
    [3]闫艳燕,栗成杰,赵波,等.二维超声磨削纳米氧化锆陶瓷的磨削力特性研究[J].中国机械工程,2008,14(19):1270-1274.
    [4]吴雁,朱训生,赵波.工件横向施振超声振动磨削力特性实验研究[J].机械科学与技术,2006,25(2):146-148.
    [5]曲云霞,关颉文.超声振动磨削对工件表面粗糙度的影响[J].河北工业大学学报,1997,26(3):99-104.
    [6]吴春兰,韩晓红.3D打印技术对我国制造业带来的机遇探讨[J].兰州交通大学学报,2014(2):128-130.
    [7]谭德远.黄金树结构两种节点可选方案的性能比较[J].钢结构,2002,17(59):19-20.
    [8]孙光永,李光耀,陈涛,等.多目标粒子群优化算法在薄板冲压成形中的应用[J].机械工程学报,2009,45(5):153-159.
    [9]Agarwal S,Venkateswara P.Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding[J].International Journal of Machine Tools&Manufacture,2013,18(65):68-78.
    [10]冯继伦.磨削表面粗糙度及其概率统计问题[J].机械设计与制造,1982,34(4):34-38.
    [11]Azarhoushang B,Tawakoli T.Development of a novel ultrasonic unit for grinding of ceramic matrix composites[J].The International Journal of Advanced Manufacturing Technology,2011,57(5):945-955.
    [12]马尔金.磨削技术理论与应用[M].蔡光起,巩亚东,宋贵亮,译.沈阳:东北大学出版社,2002.
    [13]Xun Chen,Rowe W Brian.Analysis and simulation of the grinding process,part I:generation of eht grinding wheelsurface[J].International Journal of Machine Tools Manufact,1996,36(8):871-882.
    [14]刘月明,巩亚东,曹振轩.基于数值建模的砂轮形貌仿真与测量[J].机械工程学报,2012,48(23):184-190.
    [15]Hou Zhenbing,Komanduri R.On the mechanism of the grinding process-part1 stochastic nature of the grinding process[J].International Journal of Machine Tools&Manufacture,2003,43(15):1579-1593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700