用户名: 密码: 验证码:
抑制剂胱氨酸结多肽的抗菌和杀虫活性及进化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Antimicrobial and insecticidal activities and evolution of inhibitor cystine knot peptides
  • 作者:赵静茹 ; 袁守丽 ; 高斌 ; 朱顺义
  • 英文作者:ZHAO Jing-Ru;YUAN Shou-Li;GAO Bin;ZHU Shun-Yi;Group of Peptide Biology and Evolution,State Key Laboratory of Integrated Management of Pest Insects & Rodents,Institute of Zoology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:抑制剂胱氨酸结 ; 昆虫 ; 抗微生物活性 ; 杀虫活性 ; 进化
  • 英文关键词:Inhibitor cystine knot;;insects;;antimicrobial activity;;insecticidal activity;;evolution
  • 中文刊名:KCXB
  • 英文刊名:Acta Entomologica Sinica
  • 机构:中国科学院动物研究所农业虫害鼠害综合治理研究国家重点实验室多肽生物学及进化研究组;中国科学院大学;
  • 出版日期:2018-10-20
  • 出版单位:昆虫学报
  • 年:2018
  • 期:v.61
  • 基金:农业虫害鼠害综合治理研究国家重点实验室开放课题(ChineseIPM1707)
  • 语种:中文;
  • 页:KCXB201810011
  • 页数:10
  • CN:10
  • ISSN:11-1832/Q
  • 分类号:94-103
摘要
抑制剂胱氨酸结(inhibitor cystine knot, ICK)多肽是胱氨酸结(cystine knot, CK)多肽的三大家族成员之一。这种类型的多肽含有反向平行的3个β折叠,由3对二硫键形成稳定的拓扑学打结。它们广泛地分布在动物、植物、真菌甚至原核生物中,具有蛋白酶抑制剂,离子通道毒素以及抗微生物、抗疟疾及抗病毒活性等多种生物学功能。本文首先总结了昆虫中已发现的抗微生物活性和离子通道毒素活性的ICK肽;然后介绍了有毒动物尤其是蜘蛛、蝎子,以及植物中一些神经毒素活性的ICK肽,它们通常靶向昆虫体内的各种离子通道,从而发挥杀虫效果;最后结合ICK肽的基因序列特征,结构域和二硫键数目以及物种分布,对其进化多样性进行了探讨。
        Inhibitor cystine knot(ICK) peptides are one of the three family members of cystine knot(CK) peptides. Peptides of this kind consist of a triplet-stranded antiparallel β-sheet stabilized by three disulfide bonds to form a topological knot. They are widely distributed in animals, plants, fungi and even prokaryotes, exhibiting a diversity of biological functions including protease inhibitors, ion channel toxins, and antimicrobial, antimalarial and antiviral activities. In this article, we firstly summarized the ICK peptides found in insects with antimicrobial and ion channel toxin activities, and then introduced some neurotoxic ICK peptides in poisonous animals especially spiders and scorpions, as well as plants. These toxins usually target various ion channels of insects to exert their insecticidal activity. Finally, we discussed the evolutionary diversity of ICK peptides in combination with their gene sequence characteristics, the numbers of their domains and disulfide bonds and species distribution.
引文
Bae C, Anselmi C, Kalia J, Jara-Oseguera A, Schwieters CD, Krepkiy D, Won Lee C, Kim EH, Kim JI, Faraldo-Gomez JD, Swartz KJ, 2016. Structural insights into the mechanism of activation of the TRPV1 channel by a membrane-bound tarantula toxin. eLife, 5: e11273.
    Bae C, Kalia J, Song I, Yu J, Kim HH, Swartz KJ, Kim JI, 2012. High yield production and refolding of the double-knot toxin, an activator of TRPV1 channels. PLoS ONE, 7(12): e51516.
    Barbault F, Landon C, Guenneugues M, Meyer JP, Schott V, Dimarcq JL, Vovelle F, 2003. Solution structure of Alo-3: a new knottin-type antifungal peptide from the insect Acrocinus longimanus. Biochemistry, 42(49): 14434-14442.
    Bende NS, Dziemborowicz S, Herzig V, Ramanujam V, Brown GW, Bosmans F, Nicholson GM, King GF, Mobli M, 2015. The insecticidal spider toxin SFI1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large beta-hairpin loop. FEBS J., 282(5): 904-920.
    Bende NS, Kang E, Herzig V, Bosmans F, Nicholson GM, Mobli M, King GF, 2013. The insecticidal neurotoxin Aps III is an atypical knottin peptide that potently blocks insect voltage-gated sodium channels. Biochem. Pharmacol., 85(10): 1542-1554.
    Bernard C, Corzo G, Adachi-Akahane S, Foures G, Kanemaru K, Furukawa Y, Nakajima T, Darbon H, 2004. Solution structure of ADO1, a toxin extracted from the saliva of the assassin bug, Agriosphodrus dohrni. Proteins, 54(2): 195-205.
    Bernard C, Corzo G, Mosbah A, Nakajima T, Darbon H, 2001. Solution structure of Ptu1, a toxin from the assassin bug Peirates turpis that blocks the voltage-sensitive calcium channel N-type. Biochemistry, 40(43): 12795-12800.
    Bloch G, Cohen M, 2014. The expression and phylogenetics of the Inhibitor Cysteine Knot peptide OCLP1 in the honey bee Apis mellifera. J. Insect Physiol., 65: 1-8.
    Bohlen CJ, Priel A, Zhou S, King D, Siemens J, Julius D, 2010. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell, 141(5): 834-845.
    Candido-Silva JA, Zanarotti GM, Gallina AP, de Almeida JC, 2007. Developmental regulation of BhSGAMP-1, a gene encoding an antimicrobial peptide in the salivary glands of Bradysia hygida (Diptera, Sciaridae). Genesis, 45(10): 630-638.
    Chen J, Xu Y, San MK, Cao ZJ, Li WX, Wu YL, Chen ZY, 2015. Cloning and genomic characterization of a natural insecticidal peptide LaIT1 with unique DDH structural fold. J. Biochem. Mol. Toxicol., 29(5): 207-212.
    Choi SJ, Parent R, Guillaume C, Deregnaucourt C, Delarbre C, Ojcius DM, Montagne JJ, Celerier ML, Phelipot A, Amiche M, Molgo J, Camadro JM, Guette C, 2004. Isolation and characterization of Psalmopeotoxin I and II: two novel antimalarial peptides from the venom of the tarantula Psalmopoeus cambridgei. FEBS Lett., 572(1-3): 109-117.
    Chouabe C, Eyraud V, Da Silva P, Rahioui I, Royer C, Soulage C, Bonvallet R, Huss M, Gressent F, 2011. New mode of action for a knottin protein bioinsecticide: pea albumin 1 subunit b (PA1b) is the first peptidic inhibitor of V-ATPase. J. Biol. Chem., 286(42): 36291-36296.
    Craik DJ, Daly NL, Waine C, 2001. The cystine knot motif in toxins and implications for drug design. Toxicon, 39(1): 43-60.
    Da Silva P, Strzepa A, Jouvensal L, Rahioui I, Gressent F, Delmas AF, 2009. A folded and functional synthetic PA1b: an interlocked entomotoxic miniprotein. Biopolymers, 92(5): 436-444.
    Daquinag AC, Sato T, Koda H, Takao T, Fukuda M, Shimonishi Y, Tsukamoto T, 1999. A novel endogenous inhibitor of phenoloxidase from Musca domestica has a cystine motif commonly found in snail and spider toxins. Biochemistry, 38(7): 2179-2188.
    Deng YC, Gu JW, Nie F, Xiao L, 2016. Cystine knot peptide’s properties and its applications for drug design and molecular engineering. J. Pharm. Pract., 34(6): 481-484, 496. [邓宇晨, 顾嘉伟, 聂菲, 肖良, 2016. 胱氨酸结模体多肽的特征及其在药物设计和分子工程中的应用. 药学实践杂志, 34(6): 481-484, 496]
    Gao B, Harvey PJ, Craik DJ, Ronjat M, De Waard M, Zhu SY, 2013. Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold. Biosci. Rep., 33(3): 513-527.
    Gelly JC, Gracy J, Kaas Q, Le-Nguyen D, Heitz A, Chiche L, 2004. The KNOTTIN website and database: a new information system dedicated to the knottin scaffold. Nucleic Acids Res., 32(Database issue): D156-D159.
    Gracy J, Le-Nguyen D, Gelly JC, Kaas Q, Heitz A, Chiche L, 2008. KNOTTIN: the knottin or inhibitor cystine knot scaffold in 2007. Nucleic Acids Res., 36(Database issue): D314-D319.
    Hardy MC, Daly NL, Mobli M, Morales RA, King GF, 2013. Isolation of an orally active insecticidal toxin from the venom of an Australian tarantula. PLoS ONE, 8(9): e73136.
    Hariton Shalev A, Sobol I, Ghanim M, Liu SS, Czosnek H, 2016. The whitefly Bemisia tabaci knottin-1 gene is implicated in regulating the quantity of tomato yellow leaf curl virus ingested and transmitted by the insect. Viruses, 8(7): 205.
    Herzig V, King GF, 2015. The cystine knot is responsible for the exceptional stability of the insecticidal spider toxin omega-Hexatoxin-Hv1a. Toxins (Basel), 7(10): 4366-4380.
    Horita S, Matsushita N, Kawachi T, Ayabe R, Miyashita M, Miyakawa T, Nakagawa Y, Nagata K, Miyagawa H, Tanokura M, 2011. Solution structure of a short-chain insecticidal toxin LaIT1 from the venom of scorpion Liocheles australasiae. Biochem. Biophys. Res. Commun., 411(4): 738-744.
    Hwang B, Hwang JS, Lee J, Lee DG, 2010. Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris. Biochem. Biophys. Res. Commun., 400(3): 352-357.
    Hwang B, Hwang JS, Lee J, Lee DG, 2011. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem. Biophys. Res. Commun., 405(2): 267-271.
    Hwang JS, Lee J, Hwang B, Nam SH, Yun EY, Kim SR, Lee DG, 2010. Isolation and characterization of psacotheasin, a novel knottin-type antimicrobial peptide, from Psacothea hilaris. J. Microbiol. Biotechnol., 20(4): 708-711.
    Jouvensal L, Quillien L, Ferrasson E, Rahbe Y, Gueguen J, Vovelle F, 2003. PA1b, an insecticidal protein extracted from pea seeds (Pisum sativum): 1H-2-D NMR study and molecular modeling. Biochemistry, 42(41): 11915-11923.
    Khan SA, Zafar Y, Briddon RW, Malik KA, Mukhtar Z, 2006. Spider venom toxin protects plants from insect attack. Transgenic Res., 15(3): 349-357.
    Kintzing JR, Cochran JR, 2016. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Curr. Opin. Chem. Biol., 34: 143-150.
    Kuhn-Nentwig L, Fedorova IM, Luscher BP, Kopp LS, Trachsel C, Schaller J, Vu XL, Seebeck T, Streitberger K, Nentwig W, Sigel E, Magazanik LG, 2012. A venom-derived neurotoxin, CsTx-1, from the spider Cupiennius salei exhibits cytolytic activities. J. Biol. Chem., 287(30): 25640-25649.
    Kuzmenkov AI, Fedorova IM, Vassilevski AA, Grishin EV, 2013. Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments. Biochim. Biophys. Acta, 1828(2): 724-731.
    Li DL, Xiao YC, Hu WJ, Xie JY, Bosmans F, Tytgat J, Liang SP, 2003. Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana. FEBS Lett., 555(3): 616-622.
    Matsubara FH, Meissner GO, Herzig V, Justa HC, Dias BC, Trevisan-Silva D, Gremski LH, Gremski W, Senff-Ribeiro A, Chaim OM, King GF, Veiga SS, 2017. Insecticidal activity of a recombinant knottin peptide from Loxosceles intermedia venom and recognition of these peptides as a conserved family in the genus. Insect Mol. Biol., 26(1): 25-34.
    McDonald NQ, Hendrickson WA, 1993. A structural superfamily of growth factors containing a cystine knot motif. Cell, 73(3): 421-424.
    Meissner GO, de Resende Lara PT, Scott LP, Braz AS, Chaves-Moreira D, Matsubara FH, Soares EM, Trevisan-Silva D, Gremski LH, Veiga SS, Chaim OM, 2016. Molecular cloning and in silico characterization of knottin peptide, U2-SCRTX-Lit2, from brown spider (Loxosceles intermedia) venom glands. J. Mol. Model., 22(9): 196.
    Mikov AN, Fedorova IM, Potapieva NN, Maleeva EE, Andreev YA, Zaitsev AV, Kim KK, Bocharov EV, Bozin TN, Altukhov DA, Lipkin AV, Kozlov SA, Tikhonov DB, Grishin EV, 2015. Omega-Tbo-IT1-new inhibitor of insect calcium channels isolated from spider venom. Sci. Rep., 5: 17232.
    Muench SP, Rawson S, Eyraud V, Delmas AF, Da Silva P, Phillips C, Trinick J, Harrison MA, Gressent F, Huss M, 2014. PA1b inhibitor binding to subunits c and e of the vacuolar ATPase reveals its insecticidal mechanism. J. Biol. Chem., 289(23): 16399-16408.
    Nakasu EY, Williamson SM, Edwards MG, Fitches EC, Gatehouse JA, Wright GA, Gatehouse AM, 2014. Novel biopesticide based on a spider venom peptide shows no adverse effects on honeybees. Proc. Biol. Sci., 281(1787): 20140619.
    Nicholson GM, 2007. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon, 49(4): 490-512.
    Nikoh N, Nakabachi A, 2009. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol., 7: 12.
    Norton RS, Pallaghy PK, 1998. The cystine knot structure of ion channel toxins and related polypeptides. Toxicon, 36(11): 1573-1583.
    Oparin PB, Nadezhdin KD, Berkut AA, Arseniev AS, Grishin EV, Vassilevski AA, 2016. Structure of purotoxin-2 from wolf spider: modular design and membrane-assisted mode of action in arachnid toxins. Biochem. J., 473(19): 3113-3126.
    Pallaghy PK, Nielsen KJ, Craik DJ, Norton RS, 1994. A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory polypeptides. Protein Sci., 3(10): 1833-1839.
    Park HG, Kyung SS, Lee KS, Kim BY, Choi YS, Yoon HJ, Kwon HW, Je YH, Jin BR, 2014. Dual function of a bee (Apis cerana) inhibitor cysteine knot peptide that acts as an antifungal peptide and insecticidal venom toxin. Dev. Comp. Immunol., 47(2): 247-253.
    Postic G, Gracy J, Perin C, Chiche L, Gelly JC, 2018. KNOTTIN: the database of inhibitor cystine knot scaffold after 10 years, toward a systematic structure modeling. Nucleic Acids Res., 46(Database issue): D454-D458.
    Rees DC, Lipscomb WN, 1982. Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5  resolution. J. Mol. Biol., 160(3): 475-498.
    Sachkova MY, Slavokhotova AA, Grishin EV, Vassilevski AA, 2014a. Structure of the yellow sac spider Cheiracanthium punctorium genes provides clues to evolution of insecticidal two-domain knottin toxins. Insect Mol. Biol., 23(4): 527-538.
    Sachkova MY, Slavokhotova AA, Grishin EV, Vassilevski AA, 2014b. Genes and evolution of two-domain toxins from lynx spider venom. FEBS Lett., 588(5): 740-745.
    Shrestha YK, Lee KY, 2012. Oral toxicity of Photorhabdus culture media on gene expression of the adult sweetpotato whitefly, Bemisia tabaci. J. Invertebr. Pathol., 109(1): 91-96.
    Smith JJ, Hill JM, Little MJ, Nicholson GM, King GF, Alewood PF, 2011. Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif. Proc. Natl. Acad. Sci. USA, 108(26): 10478-10483.
    Sunagar K, Undheim EA, Chan AH, Koludarov I, Munoz-Gomez SA, Antunes A, Fry BG, 2013. Evolution stings: the origin and diversification of scorpion toxin peptide scaffolds. Toxins (Basel), 5(12): 2456-2487.
    Tedford HW, Gilles N, Menez A, Doering CJ, Zamponi GW, King GF, 2004. Scanning mutagenesis of omega-atracotoxin-Hv1a reveals a spatially restricted epitope that confers selective activity against insect calcium channels. J. Biol. Chem., 279(42): 44133-44140.
    Tian CH, Gao B, Fang Q, Ye GY, Zhu SY, 2010. Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective. BMC Genomics, 11: 187.
    Torres AF, Huang C, Chong CM, Leung SW, Prieto-da-Silva AR, Havt A, Quinet YP, Martins AM, Lee SM, Radis-Baptista G, 2014. Transcriptome analysis in venom gland of the predatory giant ant Dinoponera quadriceps: insights into the polypeptide toxin arsenal of hymenopterans. PLoS ONE, 9(1): e87556.
    Vassilevski AA, Kozlov SA, Samsonova OV, Egorova NS, Karpunin DV, Pluzhnikov KA, Feofanov AV, Grishin EV, 2008. Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem. J., 411(3): 687-696.
    Vassilevski AA, Sachkova MY, Ignatova AA, Kozlov SA, Feofanov AV, Grishin EV, 2013. Spider toxins comprising disulfide-rich and linear amphipathic domains: a new class of molecules identified in the lynx spider Oxyopes takobius. FEBS J., 280(23): 6247-6261.
    Villegas E, Adachi-Akahane S, Bosmans F, Tytgat J, Nakajima T, Corzo G, 2008. Biochemical characterization of cysteine-rich peptides from Oxyopes sp. venom that block calcium ion channels. Toxicon, 52(2): 228-236.
    Windley MJ, Herzig V, Dziemborowicz SA, Hardy MC, King GF, Nicholson GM, 2012. Spider-venom peptides as bioinsecticides. Toxins (Basel), 4(3): 191-227.
    Zhang CR, Zhang S, Xia J, Li FF, Xia WQ, Liu SS, Wang XW, 2014. The immune strategy and stress response of the Mediterranean species of the Bemisia tabaci complex to an orally delivered bacterial pathogen. PLoS ONE, 9(4): e94477.
    Zhang YT, Fernandez-Aparicio M, Wafula EK, Das M, Jiao YN, Wickett NJ, Honaas LA, Ralph PE, Wojciechowski MF, Timko MP, Yoder JI, Westwood JH, Depamphilis CW, 2013. Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species. BMC Evol. Biol., 13: 48.
    Zhang ZT, Zhu SY, 2012. Comparative genomics analysis of five families of antimicrobial peptide-like genes in seven ant species. Dev. Comp. Immunol., 38(2): 262-274.
    Zhao JZ, Yuan SL, Gao B, Zhu SY, 2018. Molecular diversity of fungal inhibitor cystine knot peptides evolved by domain repeat and fusion. FEMS Microbiol. Lett., 365(15): fny158.
    Zhu LM, Gao B, Zhu SY, 2015. Origin of neurotoxins from defensins. Acta Physiol. Sin., 67(3): 239-247. [朱丽梅, 高斌, 朱顺义, 2015. 靶向离子通道的神经毒素起源于抗微生物防御肽. 生理学报, 67(3): 239-247]
    Zhu SY, Darbon H, Dyason K, Verdonck F, Tytgat J, 2003. Evolutionary origin of inhibitor cystine knot peptides. FEBS J., 17(12): 1765-1767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700