用户名: 密码: 验证码:
固溶处理对高氮奥氏体不锈钢组织和力学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of solution treatment on microstructure and mechanical properties of high nitrogen austenitic stainless steel
  • 作者:王鼎 ; 王伟 ; 赵英利 ; 嵇爽
  • 英文作者:WANG Ding;WANG Wei;ZHAO Yingli;JI Shuang;Naval Military Representative Office in Baotou;Ningbo Branch of Chinese Academy of Ordnance Science;Hebei Iron and Steel Technology Research Institite;
  • 关键词:固溶处理 ; 高氮奥氏体不锈钢 ; 热轧 ; 塑性 ; 冷弯性能
  • 英文关键词:solid solution treatment;;high nitrogen austenitic stainless steel;;hot rolling;;plasticity;;cold bending properties
  • 中文刊名:BCKG
  • 英文刊名:Ordnance Material Science and Engineering
  • 机构:海军驻包头地区军事代表室;中国兵器科学研究院宁波分院;河北钢铁研究总院;
  • 出版日期:2018-12-17 15:37
  • 出版单位:兵器材料科学与工程
  • 年:2019
  • 期:v.42;No.292
  • 语种:中文;
  • 页:BCKG201901026
  • 页数:4
  • CN:01
  • ISSN:33-1331/TJ
  • 分类号:104-107
摘要
利用光学显微镜、扫描电镜等,对热轧后水冷处理和空冷的高氮奥氏体不锈钢微观组织进行观察,研究热轧后热处理对高氮不锈钢力学性能的影响。结果表明:与热轧后空冷试样相比,水冷处理试样的抗拉强度提高4%,伸长率提高78%,冷弯性能提高62%;亚晶界和高密度位错是水冷处理钢具有优异力学性能的主要原因。
        In order to investigate the influence of heat treatment on the mechanical property of the high nitrogen stainless steel,the microstructure of high nitrogen austenitic stainless steel under the direct quenching and air cooling was analyzed by optical microscope and SEM.The results show that the tensile strength of the direct quenching samples is increased by 4%,the elongation is increased by 78% and the cold bending performance is increased by 62% compared with the air cooling samples.The formation of the sub-grain boundary and the higher dislocation density are the main reasons of the excellent mechanical property.
引文
[1]石锋,崔文芳,王立军,等.高氮奥氏体不锈钢研究进展[J].上海金属,2006,28(5):45-50.
    [2]齐美欢,任淑彬,陈建豪,等.粉末冶金制备高氮不锈钢的研究进展[J].粉末冶金技术,2017,35(4):299-303.
    [3]ZHAO Dingguo,WANG Shuhuan,CUI Xiaojie,et al. Research on model of solid-solid reaction and experiment[J]. Applied Mechanics&Materials,2012,236/237:163-166.
    [4]朱红春,姜周华,李花兵,等.加压技术在高品质特殊钢冶炼和凝固中的作用[J].钢铁,2015,50(11):37-44.
    [5]陶宇,EL GAMMAL T.用等离子旋转电极工艺生产高氮钢[J].钢铁研究学报,2004,16(1):15-20.
    [6]PARK Junyoung,PARK Seongjun,KANG Junyun,et al. Fatigue behaviors of high nitrogen stainless steels with different deformation modes[J]. Materials Science&Engineering A,2017,682:622-628.
    [7]周勇,郎宇平,荣凡,等. Fe-17Mn-13Cr-0.3N奥氏体不锈钢的晶间腐蚀研究[J].特殊钢,2008,29(1):22-24.
    [8]王威,陈淑梅,严伟,等.氮对冷变形高氮奥氏体不锈钢的微观结构的作用机理[J].材料热处理学报,2010,31(7):59-65.
    [9]SHI F,TIAN P C,JIA N,et al. Improving intergranular corrosion resistance in a high-nitrogen austenitic stainless steel through grain boundary character distribution optimization[J].Corrosion Science,2016,107:49-59.
    [10]冯浩.高钼高氮超级奥氏体不锈钢在典型极端环境中的腐蚀行为研究[D].沈阳:东北大学,2014.
    [11]陈雨来,房菲,李静媛,等. C含量对高氮奥氏体不锈钢18Mn18CrN析出行为的影响[J].材料热处理学报,2015,36(9):94-102.
    [12]马玉喜.高氮奥氏体不锈钢组织结构及韧脆转变机制的研究[D].昆明:昆明理工大学,2008.
    [13]TU K N,TURNBULL D. Morphology of cellular precipitationof tin from lead-tin bicrystals[J]. Acta Metallurgica,1967,15(8):1317-1323.
    [14]FOURNELLE R A,CLARK J B. Genesis of the cellular precipitation reaction[J]. Metallurgical Transactions A,1972,3(11):2757-2767.
    [15]秦超.高强韧钢组织控制及纳米结构原子尺度观察[D].济南:山东大学,2002.
    [16]GLADMAN T,PICHERING F B. Yield,flow and fracture of polycrystals[M]. London:Applied Science Publishers LTD,1983:141.
    [17]PICKERING F B. Physical metallurgy and the design of steels[M]. London:Applied Science Publishers LTD,1978:31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700