用户名: 密码: 验证码:
三峡水库水体溶解磷与颗粒磷的输移转化特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Transport and Transformation Characteristics Between Dissolved Phosphorus and Particulate Phosphorus in Water of the Three Gorges Reservoir
  • 作者:秦延文 ; 韩超南 ; 郑丙辉 ; 马迎群 ; 杨晨晨 ; 刘志超 ; 张雷 ; 赵艳民
  • 英文作者:QIN Yan-wen;HAN Chao-nan;ZHENG Bing-hui;MA Ying-qun;YANG Chen-chen;LIU Zhi-chao;ZHANG Lei;ZHAO Yan-min;State Environmental Protection Key Laboratory of Estuarine and Coastal Environment,Chinese Research Academy of Environmental Sciences;School of Environment,Tsinghua University;
  • 关键词:颗粒磷 ; 溶解磷 ; 输移 ; 转化 ; 水体 ; 三峡水库
  • 英文关键词:particulate phosphorus;;dissolved phosphorus;;transport;;transformation;;water;;Three Gorges Reservoir
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中国环境科学研究院国家环境保护河口与海岸带环境重点实验室;清华大学环境学院;
  • 出版日期:2018-12-20 07:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划项目(2017YFC0404702);; 中国科学院科技服务网络计划(STS)项目(KFJ-EW-STS-010)
  • 语种:中文;
  • 页:HJKZ201905018
  • 页数:8
  • CN:05
  • ISSN:11-1895/X
  • 分类号:156-163
摘要
根据河流上、下游断面间水、沙和磷的输运系数差异,建立了一种分析河流水体磷的输移转化特征的判定方法.基于2015年1月(枯水期)和7月(丰水期)三峡水库的径流量、输沙量和水体磷形态数据,应用该方法分析了三峡水库水体磷的输移转化特征.结果表明,两个水期三峡水库水体均以TDP为主要磷形态,TDP通量占总磷(TP)通量的51%~96%;枯水期,三峡水库TDP表现为移出作用,主要由三峡拦坝蓄水促进泥沙颗粒吸附TDP引起,丰水期则表现为添加作用,与外源性含高浓度TDP的水量输入有关.在两个水期,三峡全库区泥沙和TPP均呈明显的沉降滞留特征,且TPP相对于沙量呈添加作用,一定程度上说明TDP被泥沙颗粒吸附而转化为TPP作用相对更强.三峡水库清溪场至万州段为水、沙和磷的主要滞留区域,与该区段泥沙颗粒粒径细化、颗粒吸附磷能力增强有关.
        To understand the difference between transport coefficients of water runoff,sand discharge,and phosphorus flux in each subsection of a river,a judgement method for analyzing the characteristics of phosphorus transport and transformation in water of rivers was established in this study. Based on the measured data of water runoff,sand discharge,and phosphorus fraction concentrations in the water of the Three Gorges Reservoir( TGR) in January and July 2015,characteristics of phosphorus transport and transformation in the water were analyzed by using the conceptual method. The results showed that the predominant phosphorus fraction in water of the TGR was total dissolved phosphorus( TDP),which accounted for 51%-96% of total phosphorus in water. The TDP flux relative to runoff in the TGR decreased in January 2015 That was caused by the adsorption of TDP by suspended particles in the dry season. In contrast,TDP flux showed additive effect relative to water runoff in July 2015 due to exogenous water inputs with high TDP concentrations in the wet season. Both sand and total particulate phosphorus( TPP) presence in the water showed obvious sediment and retention characteristics during the two periods. The TPP flux presented an additive effect relative to sand discharge,meaning that the major transformation direction of phosphorus fractions was from TDP to TPP. The subsection between Qingxichang and Wanzhou was the main retention area of water,sand,and phosphorus in the TGR,which can be associated with the enhancement of phosphorus adsorption capacity caused by particle size reduction of suspended particles in the subsection.
引文
[1]He H J,Chen H T,Yao Q Z,et al.Behavior of different phosphorus species in suspended particulate matter in the Changjiang estuary[J].Chinese Journal of Oceanology and Limnology,2009,27(4):859-868.
    [2]Pan G,Krom M D,Herut H.Adsorption-desorption of phosphate on airborne dust and riverborne particulates in East Mediterranean seawater[J].Environmental Science&Technology,2002,36(16):3519-3524.
    [3]Tang X Q,Wu M,Li R.Phosphorus distribution and bioavailability dynamics in the mainstream water and surface sediment of the Three Gorges Reservoir between 2003 and 2010[J].Water Research,2019,145:321-331.
    [4]Dorich R A,Nelson D W,Sommers L E.Estimating algal available phosphorus in suspended sediments by chemical extraction[J].Journal of Environmental Quality,1985,14(3):400-405.
    [5]Benitez-Nelson C R.The biogeochemical cycling of phosphorus in marine systems[J].Earth-Science Reviews,2000,51(1-4):109-135.
    [6]张潆元.三峡库区泥沙对磷的吸附解吸特性研究[D].北京:中央民族大学,2017.
    [7]Yao Q Z,Yu Z G,Chen H T,et al.Phosphorus transport and speciation in the Changjiang(Yangtze River)system[J].Applied Geochemistry,2009,24(11):2186-2194.
    [8]秦延文,马迎群,王丽婧,等.长江流域总磷污染:分布特征·来源解析·控制对策[J].环境科学研究,2018,31(1):9-14.Qin Y W,Ma Y Q,Wang L J,et al.Pollution of the total phosphorus in the Yangtze River Basin:distribution characteristics,source and control strategy[J].Research of Environmental Sciences,2018,31(1):9-14.
    [9]冉祥滨.三峡水库营养盐分布特征与滞留效应研究[D].青岛:中国海洋大学,2009.Ran X B.Nutrient distributions and retention of the Three Gorges Reservior[D].Qingdao:Ocean University of China,2009.
    [10]沈志良.长江磷和硅的输送通量[J].地理学报,2006,61(7):741-751.Shen Z L.Phosphorus and silicate fluxes in the Yangtze River[J].Acta Geographica Sinica,2016,61(7):741-751.
    [11]孙阳,王里奥,袁辉.三峡水库氮磷污染贡献率估算[J].重庆大学学报,2004,27(10):138-141.Sun Y,Wang L A,Yuan H.Estimation of the N and Pcontributions to the water quality of the Three Gorges Reservoir[J].Journal of Chongqing University,2004,27(10):138-141.
    [12]中华人民共和国环境保护部.长江三峡工程生态与环境监测公报[R].北京:中华人民共和国环境保护部,2002-2016.
    [13]冉祥滨,姚庆祯,巩瑶,等.蓄水前后三峡水库营养盐收支计算[J].水生态学杂志,2009,2(2):1-8.Ran X B,Yao Q Z,Gong Y,et al.Nutrient budget of Three Gorges Reservoir pre-and-post impoundment[J].Journal of Hydroecology,2009,2(2):1-8.
    [14]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [15]中华人民共和国水利部水文局.中华人民共和国水文年鉴-长江流域水文资料-长江上游干流区(第6卷,第3册)[M].北京:中华人民共和国水利部水文局,2010-2016.
    [16]Yao Q Z,Du J T,Chen H T,et al.Particle-size distribution and phosphorus forms as a function of hydrological forcing in the Yellow River[J].Environmental Science and Pollution Research,2016,23(4):3385-3398.
    [17]黄磊,方红卫,王靖宇,等.河流泥沙磷迁移过程的数学模型研究[J].水利学报,2014,45(4):394-402.Huang L,Fang H W,Wang J Y,et al.Mathematical model of phosphorus transport with river sediment[J].Journal of Hydraulic Engineering,2014,45(4):394-402.
    [18]Kelly V J.Influence of reservoirs on solute transport:a regionalscale approach[J].Hydrological Processes,2001,15(7):1227-1249.
    [19]Han C N,Zheng B H,Qin Y W,et al.Impact of upstream river inputs and reservoir operation on phosphorus fractions in waterparticulate phases in the Three Gorges Reservoir[J].Science of the Total Environment,2018,610-611:1546-1556.
    [20]潘婵娟,黎睿,汤显强,等.三峡水库蓄水至175 m后干流沉积物理化性质与磷形态分布特征[J].环境科学,2018,39(6):2615-2623.Pan C J,Li R,Tang X Q,et al.Assessment of physico-chemical properties and phosphorus fraction distribution characteristics in sediments after impounding of the Three Gorges Reservoir to 175m[J].Environmental Science,2018,39(6):2615-2623.
    [21]牛凤霞,肖尚斌,王雨春,等.三峡库区沉积物秋末冬初的磷释放通量估算[J].环境科学,2013,34(4):1308-1314.Niu F X,Xiao S B,Wang Y C,et al.Estimation of releasing fluxes of sediment phosphorous in the Three Gorges Reservoir during late autumn and early winter[J].Environmental Science,2013,34(4):1308-1314.
    [22]王圣瑞,金相灿,庞燕.不同营养水平沉积物在不同p H下对磷酸盐的等温吸附特征[J].环境科学研究,2005,18(1):53-57.Wang S R,Jin X C,Pan Y.The sorption isotherms of phosphate to different nutrient levels of sediments in different pH[J].Research of Environmental Sciences,2005,18(1):53-57.
    [23]Pan G,Krom M D,Zhang M Y,et al.Impact of suspended inorganic particles on phosphorus cycling in the Yellow River(China)[J].Envionmental Science&Technology,2013,47(17):9685-9692.
    [24]张恩仁,张经.三峡水库对长江N、P营养盐截留效应的模型分析[J].湖泊科学,2003,15(1):41-48.Zhang E R,Zhang J.Analysis of the Three-Gorge Reservoir impacts on the retention of N and P in the Yangtze River[J].Journal of Lake Sciences,2003,15(1):41-48.
    [25]郑敏.嘉陵江重庆主城段藻类营养盐限制因子生态幅研究[D].重庆:重庆大学,2007.
    [26]王英才,邱光胜,陈水松,等.三峡库区试验性蓄水期间浮游生物群落特点研究[J].人民长江,2012,43(12):4-9.Wang Y C,Qiu G S,Chen S S,et al.Research on plankton community in Three Gorges Reservoir during its trial impoundment[J].Yangtze River,2012,43(12):4-9.
    [27]陆卫军,张涛.几种河流水质评价方法的比较分析[J].环境科学与管理,2009,34(6):174-176.Lu W J,Zhang T.Comparison and analysis of several appraisal methods for river water quality[J].Environmental Science and Management,2009,34(6):174-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700