用户名: 密码: 验证码:
覆冰四分裂导线风洞试验与舞动研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Wind Tunnel Test and Galloping of Iced Quad Bundle Conductor
  • 作者:王琼 ; 王黎明 ; 卢明 ; 陆佳政 ; 梅红伟
  • 英文作者:WANG Qiong;WANG Liming;LU Ming;LU Jiazheng;MEI Hongwei;Graduate School at Shenzhen, Tsinghua University;State Grid Jiangsu Electric Economic Research Institute;Electric Power Research Institute,State Grid Henan Electric Power Company;State Key Laboratory of Disaster Prevention and Reduction for Power Grid Transmission and Distribution Equipment,State Grid Hunan Electric Power Company Limited;
  • 关键词:四分裂导线 ; 风洞试验 ; 典型覆冰 ; 空气动力学参数 ; 导线舞动 ; 临界起舞风速
  • 英文关键词:quad bundle conductor;;wind tunnel test;;typical icing;;aerodynamic parameters;;conductor galloping;;critical galloping wind velocity
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:清华大学深圳研究生院;国网江苏省电力公司经济技术研究院;国网河南省电力科学研究院;国网湖南省电力公司防灾减灾中心;
  • 出版日期:2018-12-17 16:21
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.318
  • 基金:国家重点研发计划(2017YFB0902700)~~
  • 语种:中文;
  • 页:GDYJ201905034
  • 页数:8
  • CN:05
  • ISSN:42-1239/TM
  • 分类号:271-278
摘要
输电导线舞动是线路运行中常见的现象,其会导致输电线路发生电气和机械事故,为了降低导线舞动造成的危害,需要对空气动力学参数这一关键因素进行研究。首先利用风洞试验获得了新月形和D形两种典型覆冰导线的气动力参数;然后分析了风速、覆冰厚度、导线型号、分裂间距和分裂数对导线气动力参数的影响;最后针对一条500 kV的分裂导线,利用风洞试验所获得的参数对其临界起舞风速和舞动情况进行计算和仿真。试验结果表明:仿真计算得到的结果与实际情况一致;导线气动力系数随着风速的增加呈现先增加后减小的趋势;随着覆冰厚度的增加,新月形覆冰导线在20°攻角附近出现尖峰,D形导线的升力系数在100°~170°攻角呈现明显上升的趋势;导线型号、分裂间距和分裂数均对空气动力学参数有重要的影响。本文的研究结果对实际工程中覆冰四分裂导线在不同气象条件下的舞动幅值预测及防舞技术的应用具有指导作用。
        Conductor galloping is a common phenomenon in transmission line operation, which can lead to electrical and mechanical accidents. In order to reduce the harm caused by conductor galloping, it is necessary to study the key factor of aerodynamic parameters. Firstly, the aerodynamic parameters of crescent and D-shaped typical iced conductors were obtained by wind tunnel test. Then, the effects of wind speed, ice thickness, conductor type, bundle spacing and splitting number on wire aerodynamic coefficients were analyzed. Finally, the critical galloping wind speed and galloping situation of a 500 kV four-bundle conductor were calculated and simulated using the parameters obtained from the wind tunnel test.The experimental results show that the simulation results are in good agreement with the actual situation. The aerodynamic coefficients of conductors increase first and then decrease with the increase of wind speed. With the increase of icing thickness, peaks on crescent-shaped iced conductors appear near the angle of attack at 20 degrees, and the lift coefficients of D-shaped conductors show an obvious upward trend at 100~170 degrees. Besides, the conductor type, bundle spacing, and splitting number have important effects on aerodynamic parameters. The results are of guiding significance to the prediction of galloping amplitude and the application of anti-galloping technology of ice-covered quad bundle condutor under different meteorological conditions in practical engineering.
引文
[1]郭应龙,李国兴,尤传永.输电线路舞动[M].北京:中国电力出版社,2003.GUO Yinglong,LI Guoxing,YOU Chuanyong.Transmission line galloping[M].Beijing,China:China Electric Power Press,2003.
    [2]向玲,任永辉,卢明,等.特高压输电线路防舞装置的应用仿真[J].高电压技术,2016,42(12):3830-3836.XIANG Ling,REN Yonghui,LU Ming,et al.Application simulation of anti-galloping device for UHV transmission line[J].High Voltage Engineering,2016,42(12):3830-3836.
    [3]DENHARTOG J P.Transmission line vibration due to sleet[J].Transactions of the American Institute of Electrical Engineers,1933,51(4):1074-1076.
    [4]NIGOL O,BUCHAN P G.Conductor galloping part I-Den Hartog mechanism[J].IEEE Transactions on Power Apparatus&Systems,1981,100(2):699-707.
    [5]NIGOL O,BUCHAN P G.Conductor galloping-part II torsional mechanism[J].IEEE Transactions on Power Apparatus&Systems,1981,100(2):708-720.
    [6]NIGOL O,CLARKE G J,HAVARD D G.Torsional stability of bundle conductors[J].IEEE Transactions on Power Apparatus&Systems,1977,96(5):1666-1674.
    [7]NIGOL O,CLARKE G J.Conductor galloping and control based on torsional mechanism[C]∥IEEE Transactions on Power Apparatus and Systems.New York,USA:IEEE,1974:1729-1729.
    [8]王昕,楼文娟,沈国辉,等.覆冰导线气动力特性风洞试验研究[J].空气动力学学报,2011,29(5):573-579.WANG Xin,LOU Wenjuan,SHEN Guohui,et al.Wind tunnel test study on aerodynamic characteristics of ice covered conducctors[J].Acta Aerodynamica Sinica,2011,29(5):573-579.
    [9]楼文娟,林巍,黄铭枫,等.不同厚度新月形覆冰对导线气动力特性的影响[J].空气动力学学报,2013,31(5):616-622.LOU Wenjuan,LIN Wei,HUANG Mingfeng,et al.Influence of crescent icing on aerodynamic characteristics of conductors with different thickness[J].Acta Aerodynamica Sinica,2013,31(5):616-622.
    [10]侯镭.架空输电线路导线非线性动力特性研究[D].北京:清华大学,2008.HOU Lei.Research on the non-linear dynamic characteristics of the electric overhead transmission lines[D].Beijing,China:Tsinghua University,2008.
    [11]林巍.覆冰输电导线风洞试验和气动力特性的数值研究[D].杭州:浙江大学,2012.LIN Wei.Wind tunnel and numerical study on aerodynamic characteristics of ice accreted transmission lines[D].Hangzhou,China:Zhejiang University,2012.
    [12]LOU W,LV J,HUANG M F,et al.Aerodynamic force characteristics and galloping analysis of iced bundled conductors[J].Wind&Structures,2014,18(2):135-154.
    [13]HU J,YAN B,ZHOU S,et al.Numerical investigation on galloping of iced quad bundle conductors[J].Journal of Vibration&Shock,2012,27(2):784-792.
    [14]贺建国,朱普轩,甘波,等.750 kV输电线路子导线分裂间距合理取值研究[J].电网技术,2012,36(5):42-46.HE Jianguo,ZHU Puxuan,GAN Bo,et al.Study on reasonable value of split spacing for 750 kV transmission line[J].Power System Technology,2012,36(5):42-46.
    [15]苏攀,孔韬,董晓虎.架空输电线舞动的临界风速研究[J].三峡大学学报(自然科学版),2015,37(6):70-74.SU Pan,KONG Tao,DONG Xiaohu.Study on the critical wind speed of overhead transmission lines[J].Journal of China Three Gorges University(Nature Science Edition),2015,37(6):70-74.
    [16]傅观君.特高压输电线路舞动特性及防舞关键技术研究[D].北京:清华大学,2012.FU Guanjun.Research on galloping characteristics of ultra high voltage transmission lines and key technologies of anti-galloping[D].Beijing,China:Tsinghua University,2012.
    [17]王黎明,曹露,高亚云,等.输电线路非均匀脱冰严重工况的规律[J].高电压技术,2018,44(8):2442-2449.WANG Liming,CAO Lu,GAO Yayun,et al.Rules of severe conditions of non-uniform deicing of transmission lines[J].High Voltage Engineering,2018,44(8):2442-2449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700