用户名: 密码: 验证码:
X型共轭剪切破裂-地震产生的力学机理及其演化规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical mechanism and evolution of X-shaped conjugate shear fractures-seism
  • 作者:马念杰 ; 马骥 ; 赵志 ; 郭晓菲 ; 师皓宇 ; 乔建永
  • 英文作者:MA Nianjie;MA Ji;ZHAO Zhiqiang;GUO Xiaofei;SHI Haoyu;QIAO Jianyong;School of Energy and Mining Engineering,China University of Mining and Technology(Beijing);School of Safety Engineering,North China Institute of Science and Technology;Department of Mathematics,Beijing University of Posts and Telecommunications;
  • 关键词:共轭剪切破裂 ; 地震 ; 地震机理 ; 蝶形破坏
  • 英文关键词:conjugate shear fracture;;earthquake;;seismic mechanism;;butterfly failure
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)能源与矿业学院;华北科技学院安全工程学院;北京邮电大学理学院;
  • 出版日期:2019-06-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.297
  • 基金:国家自然科学基金资助项目(51704294,51434006);; 中央高校基本科研业务费资助项目(3142018022)
  • 语种:中文;
  • 页:MTXB201906003
  • 页数:7
  • CN:06
  • ISSN:11-2190/TD
  • 分类号:27-33
摘要
地震的发生是一个极为复杂且高度非线性的物理过程,基于乔建永、马念杰、马骥等提出的X型共轭剪切破裂-地震复合模型,进一步研究了共轭剪切破裂-地震发生的力学机理,阐明了共轭剪切破裂-地震发生及其演化的物理过程,从软弱异性体周围岩体应力、破坏形态与地震能量变化的角度出发,发现了共轭剪切破裂-地震具有"仿蝶存亡"规律,获得了共轭剪切破裂-地震生成的必要条件。研究结果表明:由于构造应力显现区域应力环境的剧烈变化,地壳岩体中会形成以软弱异性体为中心的性态极不稳定的蝶形破坏区,它的扩展最终会形成显性或隐性的共轭剪切破裂;蝶形破坏区蝶叶每次扩展释放的能量会在一定范围内引发地震,即地震是触发事件动载作用下蝶形破坏瞬态扩展所释放弹性能的非线性动力现象;共轭剪切破裂在不同应力状态下经历了圆形和椭圆形破坏、蝶形渐进破坏与蝶形剧烈破坏的孕育期、生长期与剧变期;依据地震里氏震级的强弱,在共轭剪切破裂动态生成过程中地震活动存在着弱震期,中强震期与强震期的"仿蝶存亡"特点;共轭剪切破裂—地震发生的必要条件主要有地壳中的软弱异性体存在条件,构造应力剧烈变化条件,软弱异性体及其周围岩体强度条件以及地震发生的应力触发条件。
        The occurrence of earthquake was an extremely complex and highly nonlinear physical process.Based on the X-shaped conjugate shear fracture-seismic composite model proposed by QIAO Jianyong,MA Nianjie and MA Ji,etc,this paper further studied the mechanical mechanism of conjugate shear fracture-seism,and clarified the physical process of conjugate shear fracture-seismic occurrence and its evolution.From the perspective of the surrounding rock stress,failure form around the soft anisotropic body and seismic energy,it was found that the conjugate shear fractureseism had the law of "Imitation of butterfly survival".The necessary conditions for occurrence of the conjugate shear fracture-seism were obtained.The research result indicated that there was a butterfly failure zone with extremely unstable behavior in rock mass around the underground soft anisotropic body due to the dramatic change of regional stress environment in which tectonic stress appeared.The expansion of the butterfly-shaped failure zone could eventually form the dominant or recessive X-type conjugate shear fracture.The energy released by each expansion of the butterfly leaf in the butterfly-shaped failure zone could cause an earthquake within a certain range.Therefore,seismicity was the nonlinear dynamic phenomenon of the elastic energy released by the transient expansion of the butterfly-shaped damage under dynamic load of triggered event. Conjugate shear fracture was divided into the periods of initiation,growth,upheaval of circular and elliptical failure,butterfly progressive failure and butterfly severe failure under different stress states.According to the strength of Richter magnitude of earthquakes,seismic activities existed weak earthquake period,medium-strong earthquake period and strong earthquake period during the dynamic generation of conjugate shear fracture.The necessary conditions for the occurrence of an earthquake were summarized as follows: the presence of soft anisotropic bodies,the drastic changes of tectonic stress,the strength of those rocks surrounding soft anisotropic bodies,and the stress-triggering condition of an earthquake.
引文
[1]雷建设,赵大鹏,徐锡伟,等.龙门山断裂带深部结构与2008年汶川地震发震机理[J].科学通报,2018,63(19):1906-1916.LEI Jianshe,ZHAO Dapeng,XU Xiwei,et al. Deep structure of the Longmenshan fault zone and mechanism of the 2008 Wenchuan earthquake[J]. Chinese Science Bulletin,2018,63(19):1906-1916.
    [2]滕吉文,马学英,张雪梅,等.2015年尼泊尔Ms8.1大地震孕育的深层过程与发生的动力学响应[J].地球物理学报,2017,60(1):123-141.TENG Jiwen,MA Xueying,ZHANG Xuemei,et al. Deep processes and dynamic responses of the generation and occurrence of the 2015Nepal Ms8. 1 earthquake[J]. Journal of Geophysics,2017,60(1):123-141.
    [3] SHETH A,SNIGDHA S,JAISWA A,et al.Effects of the December2004 Indian Ocean Tsunami on the Indian Mainland[J]. Earthquake Spectra,2006,22(S3):S435-S473.
    [4] LAWSON A C.The California Earthquake of April 18,1906.Report of the state earthquake investigation commission,Parts 1 and 2[M].Washington:Carnegie Institution of Washington,Publication,1908.
    [5] REID H F.The mechanics of the earthquake,v.2 of The California Earthquake of April 18,1906:Report of the State Earthquake Investigation Commission[M]. Washington:Carnegie Institution of Washington Publication,1910.
    [6] BRACE W F,BYERLEE J D.Stick slip as a mechanism for earthquakes[J].Science,1966,153:990-992.
    [7]刘力强.弹性回跳模型:从经典走向未来[J].地震地质,2014,36(3):825-832.LIU Liqiang. Elastic rebound model:From the classic to the future[J].Seismology and Geology,2014,36(3):825-832.
    [8] NAKANO H. Note on the nature of forces which give rise to the earthquake motions[J]. Seismol Bull Centr Meteorol Obs,Tokyo,1923,1:92-120.
    [9] LE Pichon X,FRANCHETEAU J,BONNIN J.Plate tectonics developments in geotectonics 6[J].Likevier,Amsterdam,1973.
    [10]黄福明.地震预报研究的现状与动态[J].国际地震动态,1990,(2):4-9.HUANG Fuming. Current status and developments of earthquake prediction research[J].Recent Developments in World Seismology,1990,(2):4-9.
    [11]黄福明.断层力学概论[M].北京:地震出版社,2013:303-305.
    [12]杜建国,仵柯田,孙凤霞.地震成因综述[J].地学前缘,2018,25(4):255-267.DU Jianguo,WU Ketian,SUN Fengxia. Earthquake generation:A review[J].Earth Science Frontiers,2018,25(4):255-267.
    [13]乔建永,马念杰,马骥,等.基于动力系统结构稳定性的共轭剪切破裂-地震复合模型[J].煤炭学报,2019,44(6):1637-1646.QIAO Jianyong,MA Nianjie,MA Ji,et al. Conjugate fault-seismic composite model based on structural stability of dynamic system[J].Jouranl of China Coal Society,2019,44(6):1637-1646.
    [14]赵志强,马念杰,刘洪涛,等.巷道蝶形破坏理论及其应用前景[J].中国矿业大学学报,2018,47(5):969-978.ZHAO Zhiqiang,MA Nianjie,LIU Hongtao,et al. A butterfly failure theory of rock mass around roadway and its application prospect[J]. China University of Mining and Technology,2018,47(5):969-978.
    [15]陈颙,史培军.自然灾害[M].北京:北京师范大学出版社,2007.
    [16]赵晓燕,于仁宝.地震概论[M].北京:清华大学出版社,2013.
    [17]杨瑞东,盛学庸,魏晓,等.基于Google Earth影像分析区域性大型“X”共轭节理系统对宏观岩溶作用的控制[J].地质论评,2009,55(2):173-180.YANG Ruidong,SHENG Xueyong,WEI Xiao,et al. The control of regional large “X” conjugate joint system on Karstification from Google Earth image[J]. Geological Review,2009,55(2):173-180.
    [18]罗灼礼.震源应力场、形变场和倾斜场[J].地震学报,1980(2):61-77.LUO Zhuoli. Stress deformation and tilt fields of the earthquake sources[J].Acta Seismologica Sinica,1980(2):61-77.
    [19] HEIDBACH O,TINGAY M,BARTH A,et al.Global crustal stress pattern based on the World Stress Map database release 2008[J].Tectonophysics,2010,482(1-4):3-15.
    [20] ZANG A,STEPHANSSON O.Stress field of the earth’s crust[M].Berlin:Springer Netherlands,2010.
    [21] WESTERGAARD H M. Theory of elasticity and plasticity[M].Cambridge:Harvard University Press,1952.
    [22]吕至坚,陈建仁.蝴蝶生活史图鉴[M].台湾:晨星出版有限公司,2014.
    [23] FARRELL J,SMITH R B,HUSEN S,et al. Tomography from 26years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera[J].Geophys Resarch Letters,2014,41:3068-3073.
    [24] HUANG H H,LIN F C,SCHMANDT B,et al. The Yellowstone magmatic system from the mantle plume to the upper crust[J].Science,2015,348(6236):773-776.
    [25] EMMERMANN R,LAUTERJUNG J.The German continental deep drilling program KTB:Overview and major results[J]. Journal of Geophysical Research:Solid Earth,1997,102(B8):18179-18201.
    [26]郭晓菲,马念杰,赵希栋,等.圆形巷道围岩塑性区的一般形态及其判定准则[J].煤炭学报,2016,41(8):1871-1877.GUO Xiaofei,MA Nianjie,ZHAO Xidong,et al. General shapes and criterion for surrounding rock mass plastic zone of round roadway[J].Journal of China Coal Society,2016,41(8):1871-1877.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700