用户名: 密码: 验证码:
第一性原理研究Li_2NH的晶格动力学和热力学性质
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:First-principles study of lattice dynamical and thermodynamic properties of Li_2NH
  • 作者:赵玉娜 ; 丛红璐 ; 成爽 ; 于娜 ; 高涛 ; 马俊刚
  • 英文作者:Zhao Yu-Na;Cong Hong-Lu;Cheng Shuang;Yu Na;Gao Tao;Ma Jun-Gang;BeiJing JiaoTong University HaiBin College;Institute of Atomic and Molecular Physics, Sichuan University;
  • 关键词:第一性原理 ; Li-N-H体系 ; 晶格动力学 ; 热力学性质
  • 英文关键词:first-principles;;Li-N-H hydrogen storage;;lattice dynamics;;thermodynamic properties
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:北京交通大学海滨学院;四川大学原子与分子物理研究;
  • 出版日期:2019-07-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金应急管理项目(理论物理专项)(批准号:11547224);; 河北省高等教育教学改革研究与实践项目(批准号:2018GJJG649)资助的课题~~
  • 语种:中文;
  • 页:WLXB201913026
  • 页数:8
  • CN:13
  • ISSN:11-1958/O4
  • 分类号:254-261
摘要
采用第一性原理的赝势平面波方法系统地研究了Li_2NH的电子结构、晶格动力学和热力学性质.计算得到的晶格常数与先前的理论和实验结果符合得很好.运用线性响应理论计算了整个布里渊区高对称方向上的声子色散曲线和相应的声子态密度,发现Li_2NH(Pnma)声子色散曲线没有虚频,动力学性能相对最稳定,计算结果和先前实验及理论数据符合得很好.最后,利用得到的声子态密度进一步预测了Li_2NH的热力学性质,包括晶格振动对Helmholtz自由能、内能、熵和热容的贡献,计算结果在一定程度上可为Li-N-H储氢体系的应用提供理论指导.
        One of the key issues for scale applications of hydrogen energy is the availability of safe, efficient and ecnomicical hydrogen storage technologies. In the past few years, light metal hydrides have attracted considerable attention due to their high hydrogen capacity. With a hydrogen capacity up to ~6.5 wt%, Li_2NH is regarded as one of the most promising hydrogen storage materials. Although the hydrogen physical and thermodynamic properties of Li_2NH have been studied, the electronic structure, phonon vibration mode and thermodynamic properties of Li_2NH have not yet been resolved. In this paper, by using the first principles based on the density functional theory(DFT), we investigate the electronic structure, lattice dynamical and thermodynamic properties of Li_2NH in detail.Firstly, the structure of Li_2NH is optimized and the lattice parameters and total energy of the crystals are calculated. As shown by the calculation results, the lattice parameters are in good agreement with previous theoretical and experimental results. Our lowest-energy structure of Li_2NH has orthorhombic Pnma symmetry at T=0 K for all of the proposed structures. Secondly, the electronic band-structure studies reveal that Li_2NH has a small band gap of about 2.0 eV. The analysis of total and partial density of states of Li_2NH show that the bonding between the N and H has a covalent character. Thirdly, the lattice dynamical properties of Li_2NH are investgated at the corresponding equilibrium states. These results show that only the phonon dispersion curves of Li_2NH(Pnma) without negative frequencies are calculated along the high-symmetry points. The optical modes of phonon frequencies at G point are assigned as Raman and Infrared-active modes. Based on the calculated phonon density of states, the thermodynamic properties are computed, such as the Helmholtz free energy, internal energy, entropy and the constant-volume specific heat versus temperature. The calculation results may explore the applications in areas of hydrogen storage for Li-N-H, which is of great importance forusing hydrogen in the future.
引文
[1]Chen P, Xiong Z, Luo J, Lin J, Tan K L 2002 Nature 420 302
    [2]Ohoyama K, Nakamori Y, Orimo S, Yamada K 2005 J. Phys.Soc. Jpn. 74 483
    [3]Noritake T, Nozaki H, Aoki M, Towata S, Kitahara G,Nakamori Y, Orimo S 2005 J. Alloys Compd. 393 264
    [4]Herbst J F, Hector Jr L G 2005 Phys. Rev. B 72 125120
    [5]Balogh M P, Jones C Y, Herbst J F, Hector Jr. L G, Kundrat M 2006 J. Alloys Compd. 420 326
    [6]Mueller T, Ceder G 2006 Phys. Rev. B 74 134104
    [7]Kojima Y, Kawai Y 2005 J. Alloys Compd. 395 236
    [8]Magyari-K?pe B, Ozoli??V, Wolverton C 2006 Phys. Rev. B73 220101(R)
    [9]Song Y, Guo Z X 2006 Phys. Rev. B 74 195120
    [10]Hector Jr L G, Herbst J F 2008 J. Phys. Condens. Matter 20064229
    [11]Yang J, Lamsal J, Cai Q, Yelon W B, James W J 2008 MRS Proceedings 1098 1098 1098-HH03-06
    [12]Miceli G, Cucinotta C, Bernasconi M, Parrinello M 2010 J.Phys. Chem. C 114 15174
    [13]Miceli G, Ceriotti M, Angioletti-Uberti S, Bernasconi M,Parrinello M 2011 J. Phys. Chem. C 115 7076
    [14]Wolverton C, Siegel J D, Akbarazadeh R A, Ozolis V 2008 J.Phys. Condens. Matter 20 064228
    [15]Chen Y H, Lv X X, Du R, Dong X, Zhang C R, Kang L, Luo Y C 2013 Rare Metal Materials and Engineering 4 2(in Chinese)[陈玉红,吕晓霞,杜瑞,董肖,张材荣,康龙,罗永春2013稀有金属材料与工程4 2]
    [16]Rajeswarapalanichamy R, Santhosh M, Sudhapriyanga G,Kanagaprabha S, Iyakutti K 2015 Acta Metall. Sinica 28 550
    [17]Crivello J C, Gupta M,?ernyR, Latroche M, Chandra D2010 Phys. Rev. B 81 104113
    [18]Wang Q, Chen Y G, Zheng X, Niu G, Wu C L, Tao M D T2009 Physica B 404 3431
    [19]The ABINIT code is a common project of the UniversitéCatholique de Louvain, and other contributors(URL http://www.abinit.org)
    [20]Troullier N, Martins J L 1991 Phys. Rev. B 43 1993
    [21]Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
    [22]Baroni S, Giannozzi P, Testa A 1987 Phys. Rev. Lett. 58 1861
    [23]Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev.Mod. Phys. 73 515
    [24]Lee C, Gonze X 1995 Phys. Rev. B 51 8610
    [25]Li W 2011 Ph. D. Dissertation(Zhejiang:Zhejiang University)
    [26]Aulbur W G, Jonsson L, Wilkins J W 2000 Solid States Phys.54 1
    [27]Stampfl C, Van de Walle C G 1999 Phys. Rev. B 5 9
    [28]Gupta M, Gupta R P 2007 J. Alloys Compd. 319 446
    [29]Yao J H 2007 Ph. D. Dissertation(London:University of London)0-239
    [30]Chen Y H 2008 Ph. D. Dissertation(Lanzhou:Lanzhou University of Technology)(in Chinese)[陈玉红2008博士学位论文(兰州:兰州理工大学)]
    [31]Born M, Huang K 1954 Dynamical Theory of Crystal Lattices(Oxford:Oxford University Press)p121
    [32]Maradudin A A, Montroll E W, Weiss C H, Ipatova I P 1971Theory of Lattice Dynamics in the Harmonic Approximation(2nd Ed.)(New York:Academic Press)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700