用户名: 密码: 验证码:
食品粉末颗粒间的相互作用及结块行为的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on the Interactions Among Particles and Caking Behavior of Food Powder
  • 作者:李延华 ; 王伟军 ; 郭亮 ; 邵志鹏 ; 张婷婷
  • 英文作者:Li Yanhua;Wang Weijun;Guo Liang;Shao Zhipeng;Zhang Tingting;College of Food Science and Biotechnology, Zhejiang Gongshang University;Research & development Institute, Zhejiang Yiming Food Co.Ltd.;
  • 关键词:食品 ; 粉末颗粒 ; 相互作用 ; 结块
  • 英文关键词:food powder;;particle;;interaction;;caking
  • 中文刊名:ZLYX
  • 英文刊名:Journal of the Chinese Cereals and Oils Association
  • 机构:浙江工商大学食品与生物工程学院;浙江一鸣食品股份有限公司;
  • 出版日期:2019-03-15 09:29
  • 出版单位:中国粮油学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(31401557);; 浙江省自然科学基金(LY17C200005);; 浙江省现代食品安全与营养协同创新中心项目(2017SICR107)
  • 语种:中文;
  • 页:ZLYX201903023
  • 页数:7
  • CN:03
  • ISSN:11-2864/TS
  • 分类号:134-140
摘要
粉体结块现象是食品工业中普遍存在的实际问题。针对食品粉体结块现象进行了综述,阐述了粉末颗粒间的相互作用,介绍了食品粉末结块的测试方法,分析了食品粉末结块动力学行为与结块控制方法,提出食品粉末结块研究中需要跟踪粉末颗粒间桥联的演变过程,并总结传热传质模型对食品粉末结块行为的重要作用,旨在为食品粉末结块的有效控制提供参考。
        Powder caking is a common and practical problem in food industry. The phenomenon of powder caking was reviewed in the paper. The interaction among powder particles was expatiated. The dynamic behavior and the testing methods of caking in food powder were also analyzed. The bridging evolution process among the powder particles and the effect of heat and mass transfer model during the caking were summarized, which are aimed to provide theoretical direction for the control of caking in food powder.
引文
[1]ZAFAR U, VIVACQUA V, CALVERT G, et al. A review of bulk powder caking[J]. Powder Technology, 2017, 313:389-401
    [2] AGUILERA J M, DEL VALLE J M, KAREL M. Caking phenomena in amorphous food powders[J]. Trends in Food Science and Technology, 1995, 6:149-155
    [3]SIMONS S J. Modeling of agglomerating systems: from spheres to fractals[J]. Powder Technology, 1996, 87:29-41
    [4]VISSER J. Van der Waals and other cohesive forces affecting powder fluidization[J]. Powder Technology, 1989, 58:1-10
    [5]GHADIRI M, MARTIN C M, ARTEAGA P A, et al. Evaluation of the sin-gle contact electrical clamping force[J]. Chemical Engineering Science, 2006, 61: 2290-2300
    [6]CHRISTAKIS N, WANG J, PATEL M, et al. Cross, aggregation and caking processes of granular materials: continuum model and numerical sim-ulation with application to sugar[J]. Advanced Powder Technology, 2006, 17: 543-565
    [7]CLEAVER J A S, TYRELL J W. The influence of relative humidity on particle adhesion[J]. Kona, 2004, 22:9-22
    [8]HIESTAND E N. Principles, tenets and notions of tablet bonding and measurements of strength[J]. European Journal of Pharmaceutics and Biopharmaceutics, 1997, 44: 229-242
    [9]LANDI G, BARLETTA D, POLETTO M. Modelling and experiments on the effect of air hu-midity on the flow properties of glass powders[J]. Powder Technology, 2011, 207: 437-443
    [10]CLEAVER J A S, LOOI L. AFM study of adhesion between polystyrene particles-the influence of relative humidity and applied load[J]. Powder Technology, 2007, 174:34-37
    [11]PALZER S. The effect of glass transition on the desired and undesired agglomeration of amorphous food powders[J]. Chemical Engineering Science, 2005, 60: 3959-3968
    [12]LISTIOHADI Y D, HOURIGAN J A, SLEIGH R W, et al. An exploration of the caking of lactose in whey and skim milk powders[J]. Australian Journal of Dairy Technology, 2005, 60: 207-213
    [13]LISTIOHADI Y D, HOURIGAN J A, SLEIGH R W, et al. Effect of milling on the caking of lactose[J]. Australian Journal of Dairy Technology, 2005, 60: 214-224
    [14]BIKA D, TARDOS G I, PANMAI S, et al. Strength and morphology of solid bridges in dry granules of pharmaceutical powders[J]. Powder Technology, 2005, 150: 104-116
    [15]BAGSTER D F. A study of the caking behaviour of raw sugar under storage[J]. Bulk Solids Handling, 1985, 5:437-441
    [16]DESCAMPS N, PALZER S, ROOS Y H, et al. Glass transition and flowability/ caking behaviour of maltodextrin DE 21[J]. Journal of Food Engineering, 2013, 119:809-813
    [17]ROCK M, SCHWEDES J. Investigations on the caking behaviour of bulk solids-macroscale experiments[J]. Powder Technology, 2005, 157:121-127
    [18]CALVERT G, CURCIC N, REDHEAD C, et al. A new environmental bulk powder caking tester[J]. Powder Technology, 2013, 249:323-329
    [19]NIKOLAKAKIS I, PILPEL N. Effects of particle-shape and size on the tensile strengths of powders[J]. Powder Technology, 1988, 56:95-103
    [20]PIERRAT P, CARAM H S. Tensile strength of wet granular materials[J]. Powder Technology, 1997, 91:83-93
    [21]WALKER G M, HOLLAND C R, AHMAD M N, et al. Granular fertilizer ag-glomeration in accelerated caking tests[J]. Industrial & Engineering Chemistry Research, 1999, 38: 4100-4103
    [22]FITZPATRICK J J, DESCAMPS N. Comparison of a uniaxial force displacement tester with a ring shear tester for assessing powder cake strength[J]. Particulate Science & Technology, 2013, 31: 199-203
    [23]CHEN Y S, HSIAU S S. A new method for measuring cake thickness by a powder pressure-displacement system[J]. Advanced Powder Technology, 2008, 19: 49-60
    [24]KNIGHT P C, JOHNSON S H. Measurement of powder cohesive strength with a pene-tration test[J]. Powder Technology,1988, 54: 279-283
    [25]HASSANPOUR A, GHADIRI M. Characterization of flowability of loosely compacted co-hesive powders by indentation[J]. Particle & Particle Systems Characterization, 2007, 24:117-123
    [26]HARE C, ZAFAR U, GHADIRI M, et al. Analysis of the dynamics of the FT4 powder rheometer[J]. Powder Technology, 2015, 285: 123-127
    [27]LETURIA M, BENALI M, LAGARDE S, et al. Characterization of flow proper-ties of cohesive powders: a comparative study of traditional and new testing methods[J]. Powder Technology, 2014, 253: 406-423
    [28]CHAVEZ M E, ARDILA S N, GUMY J C, et al. Moisture-induced caking of beverage powders[J]. Journal of the Science of Food & Agriculture, 2011, 91: 2582-2586
    [29]LE B O, SCHER J, FASQUEL J P, et al. Food powders caking: methods of comparison[J]. Science Des Aliments, 2006, 26: 266-282
    [30]PATERSON A H J, BROOKS G F, BRONLUND J E, et al. Development of stickiness in amorphous lactose at constant T-Tg levels[J]. International Dairy Journal, 2005, 15: 513-519
    [31]DOWNTON G E, FLORESLUNA J L, KING C J. Mechanism of stickiness in hygroscopic, amorphous powders[J]. Industrial & Engineering Chemistry Fundamentals, 1982, 21: 447-451
    [32]CHEIGH C I, WEE H W, CHUNG M S. Caking characteristics and sensory attributes of ramen soup powder evaluated using a low-resolution proton NMR technique[J]. Food Research International, 2011, 44: 1102-1107
    [33]CHUNG M S, RUAN R, CHEN P, et al. Predicting caking be-haviors in powdered foods using a low-field nuclear magnetic resonance (NMR) technique[J]. LWT-Food Science and Technology, 2003, 36: 751-761
    [34]BHANDARI B R, HOWES T. Implication of glass transition for the drying and stability of dried foods[J]. Journal of Food Engineering, 1999, 40:71-79
    [35]FOSTER K D, BRONLUND J E, PATERSON A H J. Glass transition related cohesion of amor-phous sugar powders[J]. Journal of Food Engineering, 2006, 77: 997-1006
    [36]PEREZ M F, FLORES R A. Particle size of spray dried soymilk[J]. Applied Engineering in Agriculture, 1997, 13:647-652
    [37]FITZPATRICK J J, HODNETT M, TWOMEY M, et al. Glass transition and the flowability and caking of powders containing amorphous lac-tose[J]. Powder Technology, 2007, 178: 119-128
    [38]JOHANSON J R, PAUL B O. Eliminating caking problems[J]. Chemical Processing, 1996, 59: 71-75
    [39]CLEAVER J A S, KARATZAS G, LOUIS S, et al. Moisture-induced caking of boric acid powder[J]. Powder Technology, 2004, 146:93-101
    [40]TANAKER T. Evaluating caking strength of powders[J]. Industrial and Engineering Chemistry Product Research and Development, 1978, 17: 241-246
    [41]TARDOS G I, GUPTA R. Forces generated in solidifying liquid bridges between two small particles[J]. Powder Technology, 1996, 306: 175-180
    [42]RASTIKIAN K, CAPART R. Mathematical model of sugar dehydration during storage in a laboratory silo[J]. Journal of Food Engineering, 1998, 35: 419-431
    [43]LEAPER M C, BRADLEY M S, CLEAVER J A S, et al. Constructing an engineering model for moisture migration in bulk solids as a prelude to predicting moisture migration caking[J]. Advanced Powder Technology, 2002, 13: 411-424
    [44]BILLINGS S W, PATERSON A H J. Prediction of the onset of caking in sucrose from temperature induced moisture movement[J]. Journal of Food Engineering, 2008, 88:466-473
    [45]SPECHT D W. Caking of granular materials: an experimental and theoretical study[D]. Gainesville, University of Florida, 2006
    [46]Lipasek R A, Ortiz J C, Taylor LS, et al. Effects of anticaking agents and storage conditions on the moisture sorption, caking, and flowability of deliques-cent ingredients[J]. Food Research International, 2012, 45:369-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700