用户名: 密码: 验证码:
熔盐电磁感应加热系统的热性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of thermal performance of electromagnetic induction basedmolten salt heating system
  • 作者:张永乐 ; 张晓明 ; 吴玉庭 ; 鹿院卫 ; 马重芳
  • 英文作者:ZHANG Yongle;ZHANG Xiaoming;WU Yuting;LU Yuanwei;MA Chongfang;MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology;
  • 关键词:熔盐储热供暖 ; 电磁感应加热 ; 线圈电流 ; 流速 ; 热效率
  • 英文关键词:molten salt heat storage and heating;;electromagnetic induction heating;;coil current;;velocity;;thermal efficiency
  • 中文刊名:CNKX
  • 英文刊名:Energy Storage Science and Technology
  • 机构:北京工业大学环境与能源工程学院传热强化与过程节能教育部重点实验室及传热与能源利用北京市重点实验室;
  • 出版日期:2019-03-01
  • 出版单位:储能科学与技术
  • 年:2019
  • 期:v.8;No.40
  • 基金:国家重点研发计划项目(2017YFB0903603)
  • 语种:中文;
  • 页:CNKX201902014
  • 页数:7
  • CN:02
  • ISSN:10-1076/TK
  • 分类号:101-107
摘要
将电磁感应加热技术应用到低谷电加热熔盐储热供暖领域,搭建熔盐电磁感应加热实验系统,以感应加热器为研究对象,探究熔盐以及线圈冷却水在不同熔盐流速和线圈电流工况下的温度变化规律,计算加热效率和冷却水热损失率。结果表明:电磁感应加热器可以快速加热熔盐,熔盐温升主要集中在开始加热80~240 s之间,温升速率在100 s时最大;改变线圈电流或熔盐流速,可以产生不同终温的熔盐,流速0.177 m/s时,熔盐在不同电流下出口温度分别为201.452℃、203.891℃、207.599℃、212.975℃和221.454℃;熔盐流速一定,熔盐和线圈冷却水吸热量随线圈电流的增加而升高;线圈电流不变,熔盐吸热量随流速的增加而升高、线圈冷却水吸热量随流速增加而降低;熔盐流速0.296 m/s、线圈电流600A时,熔盐加热效率为69.28%,线圈冷却水热损失率为16.45%。
        This paper concerns the application of the electromagnetic induction heating technology in heating molten salt in a heat storage system. An experimental system was set up for electromagnetic induction heating of molten salt and temperature variation of molten salt and coil cooling water under different molten salt velocity and coil current conditions were investigated. The results showed that the electromagnetic induction heater can heat the molten salt quickly. The temperature rise of molten salt occurred mainly in the first 80—240 s after starting the heating process, and the temperature rising rate reached maximum at ~100 s. A change in the coil current or molten salt velocity can produce molten salts with different final temperatures. When the velocity was 0.177 m/s, the outlet temperature of molten salt at different currents was 201.45 ℃, 203.89 ℃, 207.60 ℃, 212.98 ℃ and 221.45 ℃. When the velocity of molten salt was constant, the heat absorption of molten salt and coil cooling water increased with increasing coil current. When the coil current was constant, the heat absorption of molten salt increased with increasing velocity, while the heat absorption of cooling water decreased. When the velocity of molten salt was 0.296 m/s and the current of coil was 600 A, the heating efficiency of molten salt was 69.28% and the corresponding heat loss of the cooling water was 16.45%.
引文
[1]朱建坤.太阳能高温熔盐传热蓄热系统设计及实验研究[D].北京:北京工业大学,2006.ZHU Jiankun.Design and experimental study on heat transfer and heat storage system of solar high temperature molten salt[D].Beijing:Beijing University of Technology,2006.
    [2]李丽霞.基于太阳能和低谷电的混合采暖系统研究[D].青岛:青岛理工大学,2009.LI Lixia.Study on hybrid heating system based on solar energy and valley electricity[D].Qingdao:Qingdao University of Technology,2009.
    [3]CHEN H,CONG T N,YANG W,et al.Progress in electrical energy storage system:A critical review[J].Progress in Natural Science,2009,19(3):291-312.
    [4]任楠.混合碳酸盐和低熔点熔盐的配制与热物性实验研究[D].北京:北京工业大学,2011.REN Nan.Preparation and thermophysical properties of mixed carbonate and low melting point molten salt[D].Beijing:Beijing University of Technology,2011.
    [5]吴玉庭,任楠,马重芳.熔融盐显热蓄热技术的研究与应用进展[J].储能科学与技术,2013,2(6):588-591.WU Yuting,REN Nan,MA Chongfang.Research and application of sensible heat storage technology of molten salt[J].Science and Technology of Energy Storage,2013,2(6):588-591.
    [6]GIL A,MEDRANO M,MARTORELL I,et al.State of the art on high temperature thermal energy storage for power generation,part1-concepts,materials and modellization[J].Renewable and Sustainable Energy Reviews,2010,14(1):31-55.
    [7]刘志儒.金属感应热处理[M].北京:机械工业出版社,1987:125.LIU Zhiru.Metal induction heat treatment[M].Beijing:Mechanical Industry Press,1987:125.
    [8]张晓明.家用电器原理与维修[M].北京:电子工业出版社,1991:98.ZHANG Xiaoming.Principle and maintenance of home appliances[M].Beijing:Electronic Industry Press,1991:98.
    [9]NAJI M,Al N M A.Thermal behavior of a porous electric heater[J].Applied Thermal Engineering,2002,22(8):449-457.
    [10]宋岩.空气电加热器结构原理及性能分析[J].南通航运职业技术学院学报,2004,3(2):18-21.SONG Yan.Structure principle and performance analysis of air-electric heater[J].Journal of Nantong Institute of Shipping Technology,2004,3(2):18-21.
    [11]JANKOWSKI T A,PAWLEY N H,GONZALES L M,et al.Approximate analytical solution for induction heating of solid cylinders[J].Applied Mathematical Modelling,2016,40(4):2770-2782.
    [12]TRIP N D,BURCA A,LEUCA T,et al.Considerations on the analysis of an induction heating system[J].International Symposium on Electronics and Telecommunications.IEEE,2014:1-4.
    [13]VALCHEV V C,TODORAVA T P,YUDOV D D,et al.Design considerations of inductors for induction heating of fluids[J].International Symposium on Electrical Apparatus and Technologies.IEEE,2016:1-3.
    [14]张大海.沥青洒布车电磁感应加热技术研究[D].西安:长安大学,2007.ZHANG Dahai.Study on electromagnetic induction heating technology of asphalt sprinkler vehicle[D].Xi'an:Changan University,2007.
    [15]孙佰仲,刘洪鹏,刘秀,等.电磁感应高温空气加热特性试验研究[J].中国电机工程学报,2009,29(20):30-34.SUN Baizhong,LIU Hongpeng,LIU Xiu,et al.Experimental study on heating characteristics of electromagnetic induction high temperature air[J].Chinese Journal of Electrical Engineering,2009,29(20):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700