用户名: 密码: 验证码:
CF_3I气体在C-GIS中开断电弧后的副产物分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Byproduct Analysis of CF_3I Gas After Arc Interruption in C-GIS
  • 作者:赵小令 ; 谭东现 ; 赵谡 ; 林启明 ; 肖登明 ; 邓云坤
  • 英文作者:ZHAO Xiaoling;TAN Dongxian;ZHAO Su;LIN Qiming;XIAO Dengming;DENG Yunkun;Department of Electrical Engineering, Shanghai Jiao Tong University;Postdoctoral Workstation on Yunnan Power Grid Corporation;
  • 关键词:CF3I气体 ; 弧后副产物 ; 色谱质谱分析 ; 热分解反应
  • 英文关键词:CF3I gas;;byproduct after arc;;chromatographmass spectrum analysis;;thermal decomposition reaction
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:上海交通大学电气系;云南电网有限责任公司博士后工作站;
  • 出版日期:2018-11-06 16:06
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.625
  • 基金:国家自然科学基金项目(51337006)~~
  • 语种:中文;
  • 页:ZGDC201914031
  • 页数:10
  • CN:14
  • ISSN:11-2107/TM
  • 分类号:343-352
摘要
随着SF6气体的温室效应引起越来越广泛的关注,环保型绝缘灭弧气体的相关研究成为电气行业热点。CF_3I气体以其优良的绝缘和热力学特性成为最有潜力的SF6替代气体。对CF_3I气体在大电流拉弧后的气体成分进行了色谱质谱分析,结合其热平衡态条件下高温气体成分和数量密度的计算,研究CF_3I气体在电弧燃烧过程的分解过程,并采用两项展开的玻尔兹曼方程分析燃弧前后气体绝缘放电特性的变化。结果显示,CF_3I气体弧后主要气体副产物为全氟代烃,包括CF4和C2F6,固体副产物为碘单质和碳单质。在成功开断电弧后,CF_3I气体分解的比例非常小,其绝缘强度甚至高于原始气体。但开断失败后约96%的CF_3I气体都分解成了CF4,此时绝缘强度降到了原始气体的56%。因而,在采取适当措施及时消除固体副产物且保证灭弧成功的前提下,CF_3I弧后副产物问题不会影响其作为潜在绝缘灭弧介质运用在环网开关柜设备中。
        With more concern on the greenhouse effect of SF6 gas, environmentally friendly insulation and arc interruption gas become the hot point of electric industry.Because of its excellent insulation and thermodynamic properties, CF_3I stands out and becomes the potential SF6 substitute. We made a chromatograph-mass spectrum analysis of CF_3I gas after high current arc and studied the decomposition process of arc burning on the basis of composition calculation results of the CF_3I gas in the local thermal equilibrium state. Besides, the discharge characteristics of CF_3I gas before and after arc are compared by employing the Boltzmann equation method with two-term approximation. The results show that, the gaseous composition of CF_3I gas after high current arc is mainly fluorocarbon, while the solids are iodine and carbon elementary substance. The decomposing ratio of CF_3I gas after successful interruption is extremely low,and the insulation strength is even higher than that of the original gas. But the ratio will be very high after arc re-ignition,and the insulation strength reduces to 56%. In the premise of timely remove of solid decomposition and successful interruption, the decomposition problem of CF_3I gas will not affect its application in cubicle gas insulation switchgear(C-GIS) as an environmentally friendly arc interruption gas.
引文
[1]黎斌.SF6高压电器设计[M].北京:机械工业出版社,2015:5-16.Li Bin.SF6 high voltage apparatus design[M].Beijing:China Machine Press,2015:5-16(in Chinese).
    [2]World Resources Institute.Why climate policy-makers can't afford to overlook fully fluorinated compounds[R].C.E,Washington:World Resources Institute,1995:7-10.
    [3]Reilly J,Prinn R,Harnisch J,et al.Multi-gas assessment of the Kyoto Protocol[J].Nature,1999,401:3466-3469.
    [4]中国气象局气候变化中心.2015年中国温室气体公报[R].北京:中国气象局科技与气候变化司,2016:3-4.China Meteorological Administration.2015 China Greenhouse Gas Bulletin[R].Beijing:China Meteorological Administration,2016:3-4(in Chinese).
    [5]Christophorou L G,Olthoff J K.Electron interactions with CF3I[J].Journal of Physical and Chemical Reference Data,2000,29:553-569.
    [6]Solomon S,Burkholder J B,Ravishankara A R,et al.Ozone depletion and global warming potentials of CF3I[J].Journal of Geophysical Research Atmospheres,1994,992:20929-20936.
    [7]Deng Yunkun,Xiao Dengming.Analysis of the insulation characteristics of CF3I gas mixtures with Ar,Xe,He,N2,and CO2 using Boltzmann equation method[J].Japanese Journal of Applied Physics,2014,53:096201.
    [8]Zhao Xiaoling,Li Bing,Xiao Dengming,et al.Breakdown characteristics of CF3I-N2 gas mixtures in a needle-plate geometry[J].IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(2):869-875.
    [9]Maekawa D,Taki M,Katagiri H,et al.The interruption and insulation characteristics by CF3I-CO2 mixture gas as candidate of substitute for SF6[C]//The 2007 Annual Meeting Record IEE,Switchgear and Lightning Arrester,Substitute for SF6.Japan:IEE,2007.
    [10]Zhao Xiaoling,Jiao Juntao,Xiao Dengming.Breakdown electric field of hot 30%CF3I/CO2 mixtures at temperature of 300-3500 K during arc extinction process[J].Plasma Science and Technology,2016,18(11):1095-1100.
    [11]Christophorou L G,Olthoff J K,Green D S.Gases for electrical insulation and arc interruption:possible present and future alternatives to pure SF6[J].NIST Technical Note,2011(8):391.
    [12]邓云坤.环保型绝缘气体CF3I在电气设备中的应用基础研究[D].上海:上海交通大学,2016.Deng Yunkun.Basic research of the environmentally friendly insulating gas CF3I for its application in electric power apparatus[D].Shanghai:Shanghai Jiao Tong University,2016(in Chinese).
    [13]Christophorou L G.Insulating gases[J].Nuclear Inst&Methods in Physics Research A,1988(268):424-433.
    [14]邱毓昌.GIS装置及其绝缘技术[M].北京:水利电力出版社,1994:7-9.Qiu Yuchang.GIS apparatus and insulation technology[M].Beijing:China Water&Power Press,1994:7-9(in Chinese).
    [15]汪沨,邱毓昌.气体绝缘开关装置(GIS)的近期发展动向[J].电网技术,2003,27(2):54-57.Wang Feng,Qiu Yuchang.The recent development of gas insulated switchgear(GIS)[J].Power System Technology,2003,27(2):54-57(in Chinese).
    [16]Belmadani B,Casanovas J,Casanovas A M.SF6decomposition under power arcs:Chemical aspects[J].IEEE Transactions on Electrical Insulation,1992,26(6):1177-1182.
    [17]Belmadani B,Casanovas J,Casanovas A M,et al.SF6decomposition under power arcs.I.Physical aspects[J].IEEE Transactions on Electrical Insulation,1991,26(6):1163-1176.
    [18]过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986:1-35.Guo Zengyuan,Zhao Wenhua.Arc and hot plasma[M].Beijing:Science Press,1986:1-35(in Chinese).
    [19]王伟宗.高压SF6电弧电流零区动态特征和衰减行为研究[D].西安:西安交通大学,2013.Wang Weizong.Investigation of the dynamic characteristics and decaying behaviour of High voltage SF6 arc during current-zero period[D].Xi'an:Xian Jiao Tong University,2013(in Chinese).
    [20]Versteeg H K,Malalasekera W.An introduction to computational fluid dynamics:the finite volume method[M].UK:Pearson Education,2007:70-98.
    [21]Itoh H,Miura Y,Ikuta N,et al.Electron swarm development in SF6.I.Boltzmann equation analysis[J].Journal of Physics D Applied Physics,2000,21(6):922-930.
    [22]Pitchford L,ONeil S,Rumble Jr J.Extended Boltzmann analysis of electron swarm experiments[J].Physical Review A,1981,23(1):294-304.
    [23]Hagelaar G,Pitchford L.Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J].Plasma Sources Science and Technology,2005,14(4):722-733.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700