用户名: 密码: 验证码:
可充锌锰电池的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of rechargeable Zn/MnO_2 batteries
  • 作者:张思兰 ; 邸江涛 ; 李清文
  • 英文作者:ZHANG Si-lan;DI Jiang-tao;LI Qing-wen;Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences;Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences;School of Physical Science and Technology, Shanghai Tech University;University of Chinese Academy of Sciences;
  • 关键词:电解液 ; 可充锌锰电池 ; 机理
  • 英文关键词:electrolytes;;rechargeable Zn/MnO_2 batteries;;mechanism
  • 中文刊名:DYJS
  • 英文刊名:Chinese Journal of Power Sources
  • 机构:中国科学院上海微系统与信息技术研究所;中国科学院苏州纳米技术与纳米仿生研究所;上海科技大学物质科学与技术学院;中国科学院大学;
  • 出版日期:2019-04-20
  • 出版单位:电源技术
  • 年:2019
  • 期:v.43;No.343
  • 基金:国家重点研发项目(2016YFA0203301);; 中科院百人计划;中科院前沿科学重点研究项目(QYZDB-SSW-SLH031);; 国家自然科学基金(21603264,21773293,21473238)
  • 语种:中文;
  • 页:DYJS201904055
  • 页数:4
  • CN:04
  • ISSN:12-1126/TM
  • 分类号:186-189
摘要
锌锰电池问世以来,由于其结构简单、安全、无毒、成本低廉且环保等特点得以广泛应用。在传统的碱性电解液中的循环稳定性差,难以实现连续多次充放循环,限制了锌锰电池的应用。而在中性电解液中,锌锰电池可以有上千次的循环寿命。在介绍不同电解液中电池工作机理的基础上,阐述了电解液对锌锰电池可充性的影响,并对可充锌锰电池技术未来的发展进行了展望。
        Since the advent of the Zn/MnO_2 battery, it has been widely used because of its simple structure, safety, nontoxic, low cost and environmental friendly. In the traditional alkaline batteries, the stability is poor, and it is difficult to realize the continuous charging of long circulation to limit more applications of the batteries. While in mild electrolyte, the battery shows thousands of cycle life. On the basis of introducing the mechanism in different electrolyte, the effects of electrolyte on the rechargeability for the Zn/MnO_2 battery were discussed and its future development was proposed.
引文
[1] ARMAND M, TARASCON J M.Building better batteries[J].Nature,2008, 451(7179):652-657.
    [2] LARCHER D, TARASCON J M.Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry,2015, 7(1):19-29.
    [3] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.
    [4] LIU J, ZHANG J G, YANG Z, et al. Materials science and materials chemistry for large scale electrochemical energy storage:From transportation to electrical grid[J]. Advanced Functional Materials, 2013,23(8):929-946.
    [5] JIANG J, LI Y, LIU J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J].Adv Mater, 2012, 24(38):5166-5180.
    [6] QU D Y. Studies of the activated carbons used in double-layer supercapacitors[J]. Journal of Power Sources, 2002, 109(2):403-411.
    [7] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nat Mater, 2008, 7(11):845-854.
    [8] ZHAI Y P, DOU Y Q, ZHAO D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23(42):4828-4850.
    [9] KOUSKSOU T, BRUEL P, JAMIL A, et al. Energy storage:Applications and challenges[J]. Solar Energy Materials and Solar Cells,2014, 120:59-80.
    [10] DANG Z M, YUAN J K, YAO S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage[J]. Adv Mater, 2013, 25(44):6334-6365.
    [11] ZHAI D, LI B, DU H, et al. The preparation of graphene decorated with manganese dioxide nanoparticles by electrostatic adsorption for use in supercapacitors[J]. Carbon, 2012, 50(14):5034-5043.
    [12] XU C,LI B,DU H, et al. Energetic zinc ion chemistry:The rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4):933-935.
    [13] JUSTIN R C, VARMA K B R. Synthesis and electrical properties of the(PVA)0.7(KI)0.3·x H2SO4(0≤x≤5)polymer electrolytes and their performance in a primary Zn/MnO2battery[J].Electrochimica Acta, 2010, 56(2):649-656.
    [14] ZHANG Y, LIU H, ZHU Z H, et al. Control synthesis and lithium ion battery performance of manganese dioxide nanowires with tunable structures but similar morphology[J]. Journal of Applied Electrochemistry, 2013, 43(7):705-710.
    [15] CHEN H, ZENG S, CHEN M, et al. Oxygen evolution assisted fabrication of highly loaded carbon nanotube/MnO2hybrid films for high-performance flexible pseudosupercapacitors[J]. Small, 2016,12(15):2035-2045.
    [16] WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104(10):4245-4270.
    [17] SU D S, THOMAS A. Nanochemical concepts for a sustainable energy supply[J]. Chem Sus Chem, 2010, 3(2):120.
    [18] AURBACH D, LU Z, SCHECHTER A, et al. Prototype systems for rechargeable magnesium batteries[J]. Nature, 2000, 407(6805):724-727.
    [19] HERTZBERG B J, HUANG A, HSIEH A, et al. Effect of multiple cation electrolyte mixtures on rechargeable Zn·Mn O2alkaline battery[J]. Chemistry of Materials, 2016, 28(13):4536-4545.
    [20] MASKELL W C, SHAW J E A, TYE F L. Manganese dioxide electrode-IV.Chemical and electrochemical reduction of an electrolytic g-MnO2[J]. Electrochimica Acta, 1981, 26(10):1403-1410.
    [21] MCBREEN J.The electrochemistry ofβ-MnO2and g-MnO2in alkaline electrolyte[J]. Electrochimica Acta, 1975, 20(3):221-225.
    [22] KOZAWA A, POWERS R A. The manganese dioxide electrode in alkaline electrolyte; the electron-proton mechanism for the discharge process from Mn O2to Mn O1.5[J]. Journal of the Electrochemical Society, 1966, 113(9):870-878.
    [23] ERA A, TAKEHARA Z, YOSHIZAWA S. Discharge mechanism of the manganese dioxide electrode[J].Electrochimica Acta, 1967,12(9):1199-1212.
    [24] DEVARAJ S, MUNICHANDRAIAH N. Effect of crystallographic structure of Mn O2on its electrochemical capacitance properties[J].The Journal of Physical Chemistry C, 2008, 112(11):4406-4417.
    [25] IM D, MANTHIRAM A. Role of bismuth and factors influencing the formation of Mn3O4in rechargeable alkaline batteries based on bismuth-containing manganese oxides[J]. Journal of the Electrochemical Society, 2003, 150(1):A 68-A 73.
    [26] LEE B, SEO H R, LEE H R, et al. Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries[J]. Chem Sus Chem, 2016, 9(20):2948-2956.
    [27] ALFARUQI M H, GIM J, KIM S, et al. Enhanced reversible divalent zinc storage in a structurally stableα-Mn O2nanorod electrode[J]. Journal of Power Sources, 2015, 288:320-327.
    [28] PAN H, SHAO Y, YAN P,et al.Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy,2016, 1(5):16039.
    [29] SUN W, WANG F, HOU S, et al. Zn/MnO2battery chemistry with H+and Zn2+coinsertion[J]. J Am Chem Soc, 2017, 139(29):9775-9778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700