用户名: 密码: 验证码:
矿用降尘超声雾化喷嘴模态与谐响应分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modal and Harmonic Response of Ultrasonic Atomizing Nozzle for Coal Mine Dust Suppression
  • 作者:郭宇 ; 刘邱祖 ; 王旭东
  • 英文作者:GUO Yu;LIU Qiuzu;WANG Xudong;College of Mechanical Engineering, Taiyuan University of Technology;
  • 关键词:煤矿降尘 ; 超声喷嘴 ; 有限元分析 ; 模态分析 ; 谐振频率
  • 英文关键词:coal mine dust suppresion;;ultrasonic nozzle;;finite element analysis;;modal analysis;;resonant frequency
  • 中文刊名:MKAQ
  • 英文刊名:Safety in Coal Mines
  • 机构:太原理工大学机械工程学院;
  • 出版日期:2019-03-20
  • 出版单位:煤矿安全
  • 年:2019
  • 期:v.50;No.537
  • 基金:国家自然科学基金资助项目(51506138)
  • 语种:中文;
  • 页:MKAQ201903024
  • 页数:4
  • CN:03
  • ISSN:21-1232/TD
  • 分类号:102-104+108
摘要
设计了一种谐振频率为18 kHz的超声雾化喷嘴。采用有限元分析进行模态分析和谐响应分析。通过对超声喷嘴的前10阶模态进行分析,获得其纵向振动的谐振频率为18 290 Hz。通过谐响应分析,获得其雾化圆盘、法兰盘及喷嘴前端面的频率-纵振位移曲线,频率为18 290 Hz时的工作应力图和总体变形图。分析得出,喷嘴在雾化圆盘处达到最大振幅4.6×10-6 m;法兰盘处振幅为5.5×10-9 m,与雾化圆盘的振幅相比,法兰盘处振幅非常小;在变幅杆的圆弧过渡处应力和变形达到最大。模拟结果显示出的纵向谐振频率18 290 Hz与理论值18 kHz十分接近,验证了设计的合理性和正确性。
        An ultrasonic atomizing nozzle with a resonant frequency of 18 kHz has been designed. The finite element analysis software was used to analyze the modal analysis and the harmonic response. Through the analysis of the first ten modes of the ultrasonic nozzles, the resonant frequency of the longitudinal vibration was 18 290 Hz. Through the harmonic response analysis, the frequency longitudinal vibration displacement curve of the atomized disk, flange plate and the nozzle front end face were obtained.Work stress diagram and the total deformation map at 18 290 Hz frequency were also obtained. The maximum amplitude of the nozzle was 4.6×10-6 m at the atomized disk and the amplitude was 5.5×10-9 m at the flange. Compared with the amplitude of the atomized disk, the amplitude of flange was very small. The stress and deformation of the horn at the arc transition reached the maximum. The results show that the longitudinal resonance frequency of 18 290 Hz was very close to the theoretical value of 18 kHz. It proves that the design was reasonable and correct.
引文
[1]李洪喜,张建林,刘燕萍,等.矿井降尘超声雾化喷嘴空化流动特性仿真研究[J].煤矿安全,2018,49(1):40-43.
    [2]瞿德刚,向东,牟鹏,等.基于分段近似方法的超声雾化喷嘴振动系统设计[J].机械工程学报,2012,48(21):48-56.
    [3]唐军,赵波,张烨,等.纵扭模态叠加型超声振子的设计研究[J].机械设计与制造,2017(2):87-90.
    [4]王伟强,束学道,汤延孝.汽油超声喷嘴的设计研究[J].压电与声光,2015,37(6):979-982.
    [5]阎长罡,石阳,杨亮,等.四分之一波长夹心式压电超声换能器的设计研究[J].工具技术,2011,45(3):72.
    [6] D Sindayihebura, L Bolle, A Cornet, et al. Theoretical and experimental study of transducers amied at lowfrequency ultrasonic atomization of liquids[J]. The Journal of the Acoustical Society of America, 1998, 103(3):1442-1448.
    [7] E Eisner. Design of sonic amplitude transformers for high magnification[J]. Proceedings of the IEEE, 1963,51(3):512.
    [8]雷辉,周双娥.用ANSYS软件分析压电陶瓷的振动状态[J].湖北大学学报,2008,30(1):30-33.
    [9]王应彪,刘传绍,王远,等.纵向压电式换能器模态分析及实验研究[J].机械设计与制造,2011(3):113.
    [10]林书玉.夹心式功率超声压电陶瓷换能器的工程设计[J].声学技术,2006,25(2):160-164.
    [11]莫喜平.ANSYS软件在模拟分析声学换能器中的应用[J].声学技术,2007,26(6):1280-1290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700