用户名: 密码: 验证码:
不同响度下晚潜伏期响应的锁相值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation for phase-locking value of late latency responses at various loudness scales
  • 作者:吴文婷 ; 谭小丹 ; 詹长安
  • 英文作者:WU Wenting;TAN Xiaodan;ZHAN Chang'an;School of Biomedical Engineering, Southern Medical University;
  • 关键词:听觉诱发电位 ; 晚潜伏期响应 ; 响度 ; 锁相值
  • 英文关键词:auditory evoked potentials;;late latency responses;;loudness;;phase-locking value
  • 中文刊名:JNDX
  • 英文刊名:Journal of Jinan University(Natural Science & Medicine Edition)
  • 机构:南方医科大学生物医学工程学院;
  • 出版日期:2019-07-15
  • 出版单位:暨南大学学报(自然科学与医学版)
  • 年:2019
  • 期:v.40;No.198
  • 基金:广州市科技计划项目(201804010282)
  • 语种:中文;
  • 页:JNDX201904013
  • 页数:9
  • CN:04
  • ISSN:44-1282/N
  • 分类号:91-99
摘要
目的:研究听觉诱发电位(AEP)的晚潜伏期响应(LLR)锁相值(PLV)在不同响度下是否表现有差异.方法:对19位听觉正常的成年受试者在响度"most comfortable"和"loud"的脑电信号(EEG)进行扫层分段等预处理后,对各扫层进行6阶复高斯小波变换,选取所有扫层PLV均值最大值对应的时间t和频率f,提取每个扫层在该时刻、频率的相位值并观察2种响度下随扫层数增长的PLV变化差异.结果:频率为2、4、…、30 Hz对应的PLV均值在t约为100 ms时取得最大值,在LLR的N100-P200复合波范围内.在该时刻频率为5 Hz时,50~410扫层"loud"的PLV始终要高于"most comfortable".取第410扫层的2种响度PLV,检验存在显著性差异(单因素方差分析,P<0.05).结论:LLR在"most comfortable"和"loud"的PLV存在显著差异,可为响度相关的AEP研究提供参考.LLR的PLV有望成为响度客观检测的潜在指标.
        Objective:To investigate whether the phase-locking values(PLV) of the late latency responses(LLR) in auditory evoked potentials(AEP) might exhibit distinction at various loudness scales. Methods: From 19 adults with normal hearing, the EEG at "most comfortable" and "loud" were recorded respectively and segmented to sweeps. Each sweep was subsequently analyzed using 6~(th) order complex gaussian wavelet. In each sweep, the phase was calculated at the time and frequency corresponding to the maximum of averaged PLV across all sweeps. Finally, the PLV based on the phase of each sweep was investigated with increasing sweep index at two loudness scales. Results: At 2, 4, …, 30 Hz, all averaged PLV exhibited their peaks at about 100 ms which is corresponding to the range N100-P200 component of LLR. At 100 ms and 5 Hz, PLV was found to be consistently larger at "loud" than at "most comfortable" from sweep index of 50~(th) to 410~(th). PLV at "most comfortable" showed statistical difference from that at "loud" at sweep index of 410~(th)(one-way ANOVAL, P<0.05). Conclusion:The PLV of LLR was found to show statistical difference at two loudness scales of "most comfortable" and "loud", which provides valuably experimental data for the loudness study based on AEP. The PLV of LLR is hopeful to be the potential index of objective loudness metrics.
引文
[1] 徐钦,叶大田.行为学方法测试听觉响度感知的时间积分效应[J].清华大学学报(自然科学版),2014,54(8):1105-1111.XU Q,YE D T.Duration dependency of loudness measured with different experimental procedures[J].Journal of Tsinghua University(Science and Technology),2014,54(8):1105-1111.
    [2] RASETSHWANE D M,TREVINO A C,GOMBERT J N,et al.Categorical loudness scaling and equal-loudness contours in listeners with normal hearing and hearing loss[J].Journal of the Acoustical Society of America,2015,137(4):1899-1913.
    [3] 吴文婷,彭达明,谭小丹,等.N100幅值衰减参数在不同响度类别下的习惯化研究[J].航天医学与医学工程,2018,31(5):502-506.WU W T,PENG D M,TAN X D,et al.Study of habituation in the N100 amplitude attenuation parameters at different loudness scales[J].Space Medicine& Medical Engineering,2018,31(5):502-506.
    [4] KORCZAK P A,SHERLOCK L P,HAWLEY M L,et al.Relations among auditory brainstem and middle latency response measures,categorical loudness judgments,and their associated physical intensities[J].Seminars in Hearing,2017,38(1):94-114.
    [5] MéNARD M,GALLéGO S,BERGER-VACHON C,et al.Relationship between loudness growth function and auditory steady-state response in normal-hearing subjects[J].Hearing Research,2008,235(1/2):105-113.
    [6] PICTON T W,DIMITRIJEVIC A,PEREZ-ABALO M C,et al.Estimating audiometric thresholds using auditory steady-state responses[J].Journal of the American Academy of Audiology,2005,16(3):140-156.
    [7] HOPPE U,ROSANOWSKI F,IRO H,et al.Loudness perception and late auditory evoked potentials in adult cochlear implant users[J].Scand Audiol,2001,30(2):119-125.
    [8] THOMPSON R F.Habituation:a history[J].Neurobiology of Learning & Memory,2009,92(2):127-134.
    [9] PRADO-GUTIERREZ P,CASTRO-FARI?AS A,MORGADO-RODRIGUEZ L,et al.Habituation of Auditory steady state responses evoked by amplitude-modulated acoustic signals in rats[J].Audiology Research,2015,5(1):21-29.
    [10] MIKE X C.Analyzing neural time series data:Theory and practice[M].Cambridge:Massachusetts Institute of Technology.2014:154-156,241-245,57.
    [11] YIN F L,STRAUSS D J.A performance study of the wavelet-phase stability (WPS) in auditory selective attention[J].Brain Research Bulletin,2011,86(1/2):110-117.
    [12] 李兴启,王秋菊.听觉诱发反应及应用[M].2版.北京:人民军医出版社,2015:23-27.LI X Q,WANG Q J.Fundamental and application of auditory evoked response[M].2nd ed.BeiJing:People Military Medical Press,2015:23-27.
    [13] PAIVA T O,ALMEIDA P R,FERREIRA-SANTOS F,et al.Similar sound intensity dependence of the N1 and P2 components of the auditory ERP:averaged and single trial evidence[J].Clinical Neurophysiology,2016,127(1):499-508.
    [14] NOLAN H,WHELAN R,REILLY R B.FASTER:Fully automated statistical thresholding for EEG artifact rejection[J].Journal of Neuroscience Methods,2010,192(1):152-162.
    [15] CHAUMON M,BISHOP D V,BUSCH N A.A practical guide to the selection of independent components of the electroencephalogram for artifact correction[J].J Neurosci Methods,2015,250(1):47-63.
    [16] 张乐平,朱志年,雷长海,等.心电信号的小波变换识别方法[J].计算机应用与软件,2004,21(6):79-80.ZHANG L P,ZHU Z N,LEI C H,et al.An identification method of ECG using wavelet transform[J].Computer Applications and Software,2004,21(6):79-80.
    [17] LI Y,CUI W G,LUO M L,et al.High-resolution time-frequency representation of EEG data using multi-scale wavelets[J].International Journal of Systems Science,2017,48(12):1-11.
    [18] MARIAM M,DELB W,CORONA-STRAUSS F I,et al.Comparing the habituation of late auditory evoked potentials to loud and soft sound[J].Physiological Measurement,2009,30(2):141-153.
    [19] 徐媛媛,袁晓,汤韩杰,等.复高斯子波及其起始尺度分析[J].四川大学学报(自然科学版),2007,44(6):1250-1254.XU Y Y,YUAN X,TANG H J,et al.On the complex gaussian wavelets and their initial scale value[J].Journal of Sichuan University (Natural Science Edition),2007,44(6):1250-1254.
    [20] LACHAUX J P,RODRIGUEZ E,MARTINERIE J,et al.Measuring phase synchrony in brain signals[J].Human Brain Mapping,1999,8(4):194-208.
    [21] AVIYENTE S,TOOTELL A,BERNAT E M.Time-frequency phase-synchrony approaches with ERPs[J].International Journal of Psychophysiology,2017,111:88-97.
    [22] HAQUE R U,WITTIG J H,DAMERA S R,et al.Cortical low-frequency power and progressive phase synchrony precede successful memory encoding[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2015,35(40):13577-13586.
    [23] CHOI W,LIM M,KIM J S,et al.Habituation deficit of auditory N100m in patients with fibromyalgia[J].European Journal of Pain,2016,20(10):1634-1643.
    [24] SOININEN H S,KARHU J,PARTANEN J,et al.Habituation of auditory N100 correlates with amygdaloid volumes and frontal functions in age-associated memory impairment[J].Physiology and Behavior,1995,57(5):927-935.
    [25] CALLAN D E,GATEAU T,DURANTIN G,et al.Disruption in neural phase synchrony is related to identification of inattentional deafness in real-world setting[J].Human Brain Mapping,2018,39(6):2596-2608.
    [26] 斯滕伯格.认知心理学[M].3版.杨炳钧,陈燕,邹枝玲,等译.北京:中国轻工业出版社,2006:59-61.STERNBERG R J.Cognitive psychology[M].3rd ed.YANG B J,CHEN Y,ZOU Z L,et al.Beijing:China Light Industry Press,2006:59-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700