用户名: 密码: 验证码:
MoO_3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:First principle study of formation mechanism of molybdenumdoped amorphous silica in MoO_3/Si interface
  • 作者:陈东运 ; 高明 ; 李拥华 ; 徐飞 ; 赵磊 ; 马忠权
  • 英文作者:Chen Dong-Yun;Gao Ming;Li Yong-Hua;Xu Fei;Zhao Lei;Ma Zhong-Quan;SHU-SOEN's R&D Lab,Department of Physics,College of Sciences,Shanghai University;
  • 关键词:第一性原理 ; MoO_3/Si界面反应 ; 钼掺杂非晶氧化硅 ; 形成能
  • 英文关键词:first principle;;MoO_3/Si interface reaction;;molybdenum-doped amorphous silica;;defect formation energy
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:上海大学理学院物理系索朗光伏材料与器件R&D联合实验室;
  • 出版日期:2019-05-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61874070,61674099,61274067);; 索朗光伏材料与器件R&D联合实验室基金(批准号:SSE0700601)资助的课题~~
  • 语种:中文;
  • 页:WLXB201910006
  • 页数:7
  • CN:10
  • ISSN:11-1958/O4
  • 分类号:57-63
摘要
采用基于密度泛函理论的第一性原理计算方法,通过模拟MoO_3/Si界面反应,研究了MoO_x薄膜沉积中原子、分子的吸附、扩散和成核过程,从原子尺度阐明了缓冲层钼掺杂非晶氧化硅(a-SiO_x(Mo))物质的形成和机理.结果表明,在1500 K温度下, MoO_3/Si界面区由Mo, O, Si三种原子混合,可形成新的稳定的物相.热蒸发沉积初始时, MoO_3中的两个O原子和Si成键更加稳定,同时伴随着电子从Si到O的转移,钝化了硅表面的悬挂键. MoO_3中氧空位的形成能小于SiO_2中氧空位的形成能,使得O原子容易从MoO_3中迁移至Si衬底一侧,从而形成氧化硅层;替位缺陷中, Si替位MoO_3中的Mo的形成能远远大于Mo替位SiO_2中的Si的形成能,使得Mo容易掺杂进入氧化硅中.因此,在晶硅(100)面上沉积MoO_3薄膜时, MoO_3中的O原子先与Si成键,形成氧化硅层,随后部分Mo原子替位氧化硅中的Si原子,最终形成含有钼掺杂的非晶氧化硅层.
        An amorphous mixing layer(3.5 –4.0 nm in thickness) containing silicon(Si), oxygen(O), molybdenum(Mo) atoms, named a-SiO_x(Mo), is usually formed by evaporating molybdenum trioxide(MoO_3) powder on an n-type Si substrate. In order to investigate the process of adsorption, diffusion and nucleation of MoO_3 in the evaporation process and ascertain the formation mechanism of a-SiO_x(Mo) on a atomic scale, the first principle calculation is used and all the results are obtained by using the Vienna ab initio simulation package. The possible adsorption model of MoO_3 on the Si(100) and the defect formation energy for substitutional defects and vacancy defects in a-SiO_2 and a-MoO_3 are calculated by the density functional theory. The results show that an amorphous layer is formed between MoO_3 film and Si(100) substrate according to ab initio molecular dynamics at 1500 K, which are in good agreement with experimental observations. The O and Mo atoms diffuse into Si substrate and form the bonds of Si —O or Si —O —Mo, and finally, form an a-SiO_x(Mo) layer. The adsorption site of MoO_3 on the reconstructed Si(100) surface, where the two oxygen atoms of MoO_3 bond with two silicon atoms of Si(100) surface, is the most stable and the adsorption energy is-5.36 eV, accompanied by the electrons transport from Si to O. After the adsorption of MoO_3 on the Si substrate, the structure of MoO_3 is changed. Two Mo—O bond lengths of MoO_3 are 1.95 ? and 1.94 ?, respectively, elongated by 0.22 ? and 0.21? compared with the those before the adsorption of MoO_3 on Si substrate, while the last bond length of MoO_3 is little changed. The defect formation energy value of neutral oxygen vacancy in a-SiO_2 is 5.11 eV and the defect formation energy values of neutral oxygen vacancy in a-MoO_3 are 0.96 eV, 1.96 eV and 3.19 eV,respectively. So it is easier to form oxygen vacancy in MoO_3 than in SiO_2, which implies that the oxygen atoms will migrate from MoO_3 to SiO_2 and forms a 3.5 –4.0-nm-thick a-SiO_x(Mo) layer. As for the substitutional defects in MoO_3 and SiO_2, Mo substitutional defects are most likely to form in SiO_2 in a large range of Mo chemical potential. So based on our obtained results, the forming process of the amorphous mixing layer may be as follows: the O atoms from MoO_3 bond with Si atoms first and form the SiO_x. Then, part of Mo atoms are likely to replace Si atoms in SiO_x. Finally, the ultra-thin buffer layer containing Si, O, Mo atoms is formed at the interface of MoO_3/Si. This work simulates the reaction of MoO_3/Si interface and makes clear the interfacial geometry. It is good for us to further understand the process of adsorption and diffusion of atoms during evaporating, and it also provides a theoretical explanation for the experimental phenomenon and conduces to obtaining better interface passivation and high conversion efficiency of solar cell.
引文
[1]Gerling L G,Mahato S,Morales-Vilches A,Masmitja G,Ortega P,Voz C,Alcubilla R,Puigdollers J 2016 Sol.Energy Mater.Sol.Cells 145 109
    [2]Bullock J,Cuevas A,Allen T,Battaglia C 2014 Appl.Phys.Lett.105 232109
    [3]Battaglia C,Yin X T,Zheng M,Sharp I D,Chen T,McDonnell S,Azcatl A,Carraro C,Ma B W,Maboudian R,Wallace R M,Javey A 2014 Nano Lett.14 967
    [4]Battaglia C,Nicolás S M D,Wolf S D,Yin X T,Zhang M,Ballif C,Javey A 2014 Appl.Phys.Lett.104 113902
    [5]Geissbühler J,Werner J,Nicolas S M D,Barraud L,HesslerWyser A,Despeisse M,Nicolay S,Tomasi A,Niesen B,Wolf S D,Ballif C 2015 Appl.Phys.Lett.107 081601
    [6]Gerling L G,Voz C,Alcubilla R,Puigdollers J 2016 J.Mater.Res.32 260
    [7]Gao M,Chen D Y,Han B C,Song W L,Zhou M,Song X M,Xu F,Zhao L,Li Y H,Ma Z Q 2018 ACS Appl.Mater.Interfaces 10 27454
    [8]Chen D Y,Gao M,Wan Y Z,Li Y H,Guo H B,Ma Z Q2019 Appl.Surf.Sci.473 20
    [9]Kresse K,Furthmüller J 1996 Phys.Rev.B 54 11169
    [10]Perdew J P,Burke K,Ernzerhof M 1996 Phys.Rev.Lett.773865
    [11]Bl?chl P E 1994 Phys.Rev.B 50 17953
    [12]Lambert D S,Murphy S T,Lennon A,Burr P A 2017 RSCAdv.7 53810
    [13]NoséS 1984 J.Chem.Phys.81 511
    [14]Fialko E F,Kikhtenko A V,Goncharov V B,Zamaraev K I1997 J.Phys.Chem.A 101 8607
    [15]Oliveira J A,Almeida W B D,Duarte H A 2003 Chem.Phys.Lett.372 650
    [16]Anez R,Sierraalta A,Díaz L,Bastardo A,Coll D 2015 Appl.Surf.Sci.335 160
    [17]Lu S Q,Wang C,Jin Y X,Bu Q Q,Yang Y 2012 J.Synthetic Crystals 41 1037
    [18]Pavlova T V,Zhidomirov G M,Eltsov K N 2018 J.Phys.Chem.C 122 1741
    [19]Wan Y Z,Gao M,Li Y,Du H W,Li Y H,Guo H B,Ma Z Q2017 Appl.Phys.Lett.110 213902
    [20]Tao P C,Huang Y,Zhou X H,Chen X S,Lu W 2017 Acta Phys.Sin.66 118201(in Chinese)[陶鹏程,黄燕,周孝好,陈效双,陆卫2017物理学报66 118201]
    [21]Coquet R,Willock D J 2005 Phys.Chem.Chem.Phys.7 3819
    [22]Scopel W L,Silva A J R D,Orellana W,Fazzio A 2004 Appl.Phys.Lett.84 1492
    [23]Liu H F,Yang R B,Yang W F,Jin Y J,Lee C J J 2018Appl.Surf.Sci.439 583

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700