用户名: 密码: 验证码:
基于Biome-BGC模型的北方杨树人工林碳水通量对气候变化的响应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modelling the responses of carbon and water fluxes with climate change for a poplar plantation in northern China based on the Biome-BGC model
  • 作者:康满春 ; 朱丽平 ; 许行 ; 查同刚 ; 张志强
  • 英文作者:KANG Manchun;ZHU Liping;XU Hang;ZHA Tonggang;ZHANG Zhiqiang;Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University;College of Biological and Pharmaceutical Sciences, China Three Gorges University;Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, College of Soil and Water Conservation, Beijing Forestry University;
  • 关键词:杨树人工林 ; Biome-BGC模型 ; 气候变化 ; 碳水通量 ; 水分利用效率
  • 英文关键词:poplar plantation;;Biome-BGC model;;climate change;;carbon and water fluxes;;water use efficiency
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:三峡大学三峡库区生态环境教育部工程研究中心;三峡大学生物与制药学院;北京林业大学水土保持与荒漠化防治教育部重点实验室;
  • 出版日期:2019-01-10 09:10
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家林业公益性行业科研专项资助项目(201404301);; 国家科技支撑计划子课题(2015BAD07B06-4);; 三峡大学高层次人才科研启动基金(20161101)
  • 语种:中文;
  • 页:STXB201907011
  • 页数:13
  • CN:07
  • ISSN:11-2031/Q
  • 分类号:116-128
摘要
研究中国北方杨树人工林碳水通量对气候变化的响应,对于制定合理的经营管理措施以应对区域的气候变化具有重要意义。基于对杨树人工林碳水通量的连续监测数据和对Biome-BGC模型参数的校准,模拟分析杨树人工林碳水通量及水分利用效率(WUE)对气候变化(气温上升、降水变化和大气CO_2浓度上升)的响应规律。结果表明,Biome-BGC模型校准后显著提升了其对杨树人工林碳水通量的模拟精度,对GPP、ET模拟结果的Nash-Sutcliffe效率系数(NS)分别为0.69和0.63,各自提高了64.3%和80%,均方根误差(RMSE)则分别降低至1.94 g C m~(-2) d~(-1)和0.88 mm/d,分别下降了26.5%和25.4%。在未来气候变化情景中,单独的气温上升、降水增加和大气CO_2浓度上升分别造成GPP的降低、升高和升高,其中GPP对大气CO_2浓度上升的响应程度(28%—44%)远高于对气温上升(1%—5%)和降水变化(3%—10%)的,ET则主要受降水的影响,响应程度在5%—14%之间。GPP和ET对气候变化的响应则受不同水平的气温上升、降水变化和大气CO_2浓度上升三者综合作用的影响。基于GPP和ET对气候变化的响应,WUE随气温上升、降水增加表现为降低趋势,随降水减少和大气CO_2浓度升高则呈升高趋势;其对未来气候中大气CO_2浓度升高的响应程度为27.7%—43.6%,远高于对气温上升(1.2%—5.8%)和降水变化(1.2%—3.5%)的,说明未来气候变化中大气CO_2浓度上升是促进杨树生长的主要因素;其中相对于当前WUE(2.8 g C/kg H_2O),C2T2P1和C0T3P0情景下WUE的升高和降低幅度最大,分别为45.4%和5.8%。
        It is of great importance to project the response of carbon and water fluxes of terrestrial ecosystems with climate change and to develop science-based biological climate change mitigation strategies. We used our continuously measured long-term carbon and water flux data for a poplar plantation(Populus euramericana CV. "74/76") to calibrate and validate a widely applied Biome-BGC model to accurately simulate gross primary productivity(GPP), evapotranspiration(ET), and water use efficiency(WUE) and to project their responses to climate change. The climate change scenarios were designed with different levels of rising temperature(T), precipitation change(P), and atmospheric CO_2 concentration(C). Results showed that the Nash-Sutcliffe coefficient(NS) of the simulated GPP and ET were 0.69 and 0.63, respectively, with a root mean square error(RMSE) of 1.94 g C m~(-2)?d~(-1)and 0.88 mm/d, respectively, which indicated that the calibrated Biome-BGC model could be effectively used for modeling their responses to climate change. Under future climate change scenarios, the overall responses of GPP and ET were influenced by a combined effect of C, T, and P. In addition, the individual responses of GPP and ET to these climatic factors varied. Rising temperature and decreasing precipitation caused a decrease in GPP, while an increase in precipitation and atmospheric CO_(2 )concentration resulted in an increase in GPP. The enhancement of GPP with increasing atmospheric CO_(2 )concentration was 28%—44%, which was much higher than that of rising temperature(1%—5%) and precipitation(3%—10%). However, the variations in ET only responded to a precipitation change of 5%—14%. As a result, WUE(GPP/ET) decreased with rising temperature and an increase in precipitation, while increased with a decrease in precipitation and rising atmospheric CO_2 concentration. The rising atmospheric CO_2 concentration enhanced WUE by 27.7%—43.6%, which was much higher than that effect of rising temperature(1.2%—5.8%) and precipitation(1.2%—3.5%). Compared with the current WUE(2.8 g C/kg H_2O), the largest increase and decrease in WUE would occur under scenarios C2 T2 P1 and C0 T3 P0, which are 45.4% and 5.8%, respectively.
引文
[1] 沈永平,王国亚.IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点.冰川冻土,2013,35(5):1068- 1076.
    [2] 方升佐.中国杨树人工林培育技术研究进展.应用生态学报,2008,19(10):2308- 2316.
    [3] Migliavacca M,Meroni M,Manca G,Matteucci G,Montagnani L,Grassi G,Zenone T,Teobaldelli M,Goded I,Colombo R,Seufert G.Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions.Agricultural and Forest Meteorology,2009,149(9):1460- 1476.
    [4] Kim H S,Oren R,Hinckley T M.Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation.Tree Physiology,2008,28(4):559- 577.
    [5] Li Y Z,Qin H Y,Xie Y H,Wang W,Chen X S,Zhang C M.Physiological mechanism for the reduction in soil water in poplar (Populus deltoides) plantations in Dongting Lake wetlands.Wetlands Ecology and Management,2014,22(1):25- 33.
    [6] Stanturf J A,van Oosten C.Operational poplar and willow culture//Isebrands J G,Richardson J,eds.Poplars and Willows:Trees for Society and the Environment.Oxfordshire,England:CABI,2012:200- 257.
    [7] 康满春,蔡永茂,王小平,查同刚,朱丽平,牛勇,周洁,张志强.表层阻力和环境因素对杨树(Populus sp.)人工林蒸散发的控制.生态学报,2016,36(17):5508- 5518.
    [8] Zhou J,Zhang Z Q,Sun G,Fang X R,Zha T G,McNulty S,Chen J Q,Jin Y,Noormets A.Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China.Forest Ecology and Management,2013,300:33- 42.
    [9] Migliavacca M,Meroni,M,Busetto L,Colombo R,Zenone T,Matteucci G,Manca G,Seufert G.Modeling gross primary production of agro-forestry ecosystems by assimilation of satellite-derived information in a process-based model.Sensors,2009,9(2):922- 942.
    [10] Chiesi M,Chirici G,Corona P,Duce P,Salvati R,Spano D,Vaccari F P,Maselli F.Use of BIOME-BGC to simulate water and carbon fluxes within Mediterranean macchia.iForest-Biogeosciences and Forestry,2012,5(5):38- 43.
    [11] Hashimoto H,Melton F,Ichii K,Milesi C,Wang W L,Nemani R R.Evaluating the impacts of climate and elevated carbon dioxide on tropical rainforests of the western Amazon basin using ecosystem models and satellite data.Global Change Biology,2010,16(1):255- 271.
    [12] Dai Z,Johnson K D,Birdsey R A,Hernandez-Stefanoni J L,Dupuy J M.Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula.Ecological Complexity,2015,24:46- 56.
    [13] Churkina G,Tenhunen J,Thornton P,Falge E M,Elbers J A,Erhard M,Grünwald T,Kowalski A S,Rannik ü,Sprinz D.Analyzing the ecosystem carbon dynamics of four european coniferous forests using a biogeochemistry model.Ecosystems,2003,6(2):168- 184.
    [14] Eastaugh C S,P?tzelsberger E,Hasenauer H.Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L.Karst) growth in Austria with BIOME-BGC.Tree Physiology,2011,31(3):262- 274.
    [15] Hlásny T,Barcza Z,Fabrika M,Balázs B,Churkina G,Pajtík J,Sedmák R,Turˇáni M.Climate change impacts on growth and carbon balance of forests in Central Europe.Climate Research,2011,47(3):219- 236.
    [16] Jochheim H,Puhlmann M,Beese F,Berthold D,Einert P,Kallweit R,Konopatzky A,Meesenburg H,Meiwes K J,Raspe S,Schulte-Bisping H,Schulz C.Modelling the carbon budget of intensive forest monitoring sites in Germany using the simulation model BIOME-BGC.iForest-Biogeosciences and Forestry,2009,2:7- 10.
    [17] Merganicová K,Merganic J,Hasenauer H.Assessing the carbon flux dynamics within virgin forests:the case study ′Babia hora′ in Slovakia.Austrian Journal of Forest Science,2012,129(1):1- 21.
    [18] Tatarinov F A,Cienciala E,Vopenka P,Avilov V.Effect of climate change and nitrogen deposition on central-European forests:Regional-scale simulation for South Bohemia.Forest Ecology and Management,2011,262(10):1919- 1927.
    [19] Ueyama M,Ichii K,Hirata R,Takagi K,Asanuma J,Machimura T,Nakai Y,Ohta T,Saigusa N,Takahashi Y,Hirano T.Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data.Biogeosciences,2010,7(3):959- 977.
    [20] 吴玉莲,王襄平,李巧燕,孙阎.长白山阔叶红松林净初级生产力对气候变化的响应:基于BIOME-BGC模型的分析.北京大学学报:自然科学版,2014,50(3):577- 586.
    [21] 何丽鸿,王海燕,王璐,王岳.长白落叶松林生态系统净初级生产力对气候变化的响应.北京林业大学学报,2015,37(9):28- 36.
    [22] 张艺,余新晓,范敏锐,常存,陆晓宇.北京山区刺槐林净初级生产力对气候变化的响应.水土保持研究,2012,19(3):151- 155.
    [23] 彭俊杰,何兴元,陈振举,崔明星,张先亮,周长虹.华北地区油松林生态系统对气候变化和CO2浓度升高的响应——基于BIOME-BGC模型和树木年轮的模拟.应用生态学报,2012,23(7):1733- 1742.
    [24] 张文海,吕锡芝,余新晓,范敏锐.气候和CO2变化对北京山区油松林NPP的影响.广东农业科学,2012,(6):4- 7.
    [25] 范敏锐,余新晓,张振明,史宇,吕锡芝,周彬.CO2倍增和气候变化对北京山区栓皮栎林NPP影响研究.生态环境学报,2010,19(6):1278- 1283.
    [26] 苏薇,余新晓,吕锡芝,范敏锐,张艺.气候变化对北京山区华北落叶松林NPP影响研究.广东农业科学,2012,(7):69- 72.
    [27] 苏宏新.全球气候变化条件下新疆天山云杉林生长的分析与模拟[D].北京:中国科学院研究生院(植物研究所),2005.
    [28] Ma Z Q,Liu Q J,Wang H M,Li X R,Zeng H Q,Xu W J.Observation and modeling of NPP for Pinus elliottii plantation in subtropical China.Science in China Series D:Earth Sciences,2008,51(7):955- 965.
    [29] Zhang T L,Sun R,Peng C H,Zhou G Y,Wang C L,Zhu Q A,Yang Y Z.Integrating a model with remote sensing observations by a data assimilation approach to improve the model simulation accuracy of carbon flux and evapotranspiration at two flux sites.Science China Earth Sciences,2016,59(2):337- 348.
    [30] 曾慧卿,刘琪璟,冯宗炜,王效科,马泽清.基于BIOME-BGC模型的红壤丘陵区湿地松(Pinus elliottii)人工林GPP和NPP.生态学报,2008,28(11):5314- 5321.
    [31] 韩玉国,李叙勇,南哲,李波.北京地区2003—2007年人类活动氮累积状况研究.环境科学,2011,32(6):1537- 1545.
    [32] White M A,Thornton P E,Running S W,Nemani R R.Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model:net primary production controls.Earth Interactions,2000,4(3):1- 85.
    [33] Zhen S,Jia S F,Lv A F,Jesper S,Gao Y C.Impacts of climate change on growth period and planting boundaries of spring wheat in China under RCP4.5 scenario.Journal of Resources and Ecology,2016,7(1):1- 11.
    [34] 翟颖佳,李耀辉,徐影.RCPs情景下中国北方地区干旱气候变化特征.高原气象,2016,35(1):94- 106.
    [35] 张冬峰,石英.区域气候模式RegCM3对华北地区未来气候变化的数值模拟.地球物理学报,2012,55(9):2854- 2866.
    [36] 韩其飞,罗格平,李超凡,叶辉,冯异星.基于Biome-BGC模型的天山北坡森林生态系统碳动态模拟.干旱区研究,2014,31(3):375- 382.
    [37] 赵敏,周广胜.中国北方林生产力变化趋势及其影响因子分析.西北植物学报,2005,25(3):466- 471.
    [38] 叶兵.北京延庆小叶杨与刺槐林的蒸腾耗水特性与水量平衡研究[D].北京:中国林业科学研究院,2007.
    [39] Kang M C,Zhang Z Q,Noormets A,Fang X R,Zha T G,Zhou J,Sun G,McNulty S G,Chen J Q.Energy partitioning and surface resistance of a poplar plantation in northern China.Biogeosciences,2015,12(14):4245- 4259.
    [40] 赵俊芳,延晓冬,贾根锁.东北森林净第一性生产力与碳收支对气候变化的响应.生态学报,2008,28(1):92- 102.
    [41] 张臻.时空异质条件下的大气CO2施肥效应对全球碳水循环影响的模拟研究[D].南京:南京大学,2013.
    [42] 徐胜,陈玮,何兴元,黄彦青,高江艳,赵诣,李波.高浓度CO2对树木生理生态的影响研究进展.生态学报,2015,35(8):2452- 2460.
    [43] Huang M T,Piao S L,Sun Y,Ciais P,Cheng L,Mao J F,Poulter B,Shi X Y,Zeng Z Z,Wang Y P.Change in terrestrial ecosystem water-use efficiency over the last three decades.Global Change Biology,2015,21(6):2366- 2378.
    [44] 刘国华,傅伯杰.全球气候变化对森林生态系统的影响.自然资源学报,2001,16(1):71- 78.
    [45] Niu S L,Xing X R,Zhang Z,Xia J Y,Zhou X H,Song B,Li L H,Wan S Q.Water-use efficiency in response to climate change:from leaf to ecosystem in a temperate steppe.Global Change Biology,2011,17(2):1073- 1082.
    [46] 周洁,张志强,孙阁,方显瑞,查同刚,张燕,王小平,陈俊崎,陈吉泉.不同土壤水分条件下杨树人工林水分利用效率对环境因子的响应.生态学报,2013,33(5):1465- 1474.
    [47] Pan S F,Chen G S,Ren W,Dangal S R S,Banger K,Yang J,Tao B,Tian H Q.Responses of global terrestrial water use efficiency to climate change and rising atmospheric CO2 concentration in the twenty-first century.International Journal of Digital Earth,2018,11(6):558- 582.
    [48] Keenan T F,Hollinger D Y,Bohrer G,Dragoni D,Munger J W,Schmid H P,Richardson A D.Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise.Nature,2013,499(7458):324- 327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700