用户名: 密码: 验证码:
基于独立调节高度和刚度的空气悬架优化和分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis and Optimization of Air Suspension System with Independent Height and Stiffness Tuning
  • 作者:吴全君 ; 尉庆国 ; 王婷 ; 秦志远
  • 英文作者:WU Quanjun;WEI Qingguo;WANG Ting;QIN Zhiyuan;School of Energy and Power Engineering, North University of China;School of Mechanical Engineering,North University of China;
  • 关键词:空气悬架系统 ; 行驶高度控制 ; 刚度调节 ; 固有频率控制
  • 英文关键词:Air suspension systems;;Ride height control;;Stiffness tuning;;Natural frequency control
  • 中文刊名:JCYY
  • 英文刊名:Machine Tool & Hydraulics
  • 机构:中北大学能源动力工程学院;中北大学机械工程学院;
  • 出版日期:2019-02-15
  • 出版单位:机床与液压
  • 年:2019
  • 期:v.47;No.477
  • 语种:中文;
  • 页:JCYY201903019
  • 页数:7
  • CN:03
  • ISSN:44-1259/TH
  • 分类号:101-107
摘要
悬架因着力解决车辆所需的平顺性和操纵性而扮演了重要的角色。传统的空气悬架系统通过气囊的不断膨胀来控制高度,然而这种悬架的刚度不能被控制。因此,提出一种允许行驶高度和悬架刚度调节的悬架系统。此系统可以根据不同的路况来改变行驶高度和悬架刚度;它允许车辆的固有频率和高度根据路况和负载而调整。研究了空气悬架的行驶高度和刚度调节的优化问题进而提出了优化设计方案并验证了该系统的数学建模优点。
        Suspensions play a crucial role for comfort and handing of vehicles.The conventional air suspension systems chassis height can be controlled by further inflating the airbag, however, the suspension stiffness is not controllable. Therefore, a new air suspension allowing independent ride height and stiffness tuning was developed. In this air suspension system, the stiffness and ride height of the vehicle could be simultaneously altered for different driving conditions; the vehicle's natural frequency and height could be adjusted according to load and road conditions. The optimization of the air suspension design with ride height and stiffness tuning was discussed, the optimum design of the new air suspension system was developed and the advantages of the new air suspension system were shown.
引文
[1] AHMADIAN M,PARE C A.A Quarter-car Experimental Analysis of Alternative Semiactive Control Methods[J].Journal of Intelligent Material Systems & Structures,2000,11(8):604-612.
    [2] BOLANDHEMMAT H,CLARK C M,GOLNARAGHI F.Development of a Systematic and Practical Methodology for the Design of Vehicles Semi-active Suspension Control System[J].Vehicle System Dynamics,2010,48(5):567-585.
    [3] FU K,MILLS J K.Integrated Design of a Quartercar Semi-active Suspension System Using a Convex Integrated Design Method[J].International Journal of Vehicle Design,2006,42(3):328-347.
    [4] NIAURA W S,TENER D R,MONROE C R,et al.Adjustable Vehicle Suspension System with Adjustable-rate Air Spring:US7380799[P].2008
    [5] AHMADIAN M.Editors’ Perspectives:Road Vehicle Suspension Design,Dynamics,and Control[J].Vehicle System Dynamics,2011,49(1/2):3-28.
    [6] CHIEN T L,CHEN C C,CHIU H C,et al.Almost Disturbance Decoupling Control of Nonlinear MIMO Uncertain System and Application to Half-car Active Suspension System[J].International Journal of Vehicle Design,2008,46(4):367-392.
    [7] CHANG F,LU Z H.Dynamic Model of an Air Spring and Integration into a Vehicle Dynamics Model[J].Proceedings of the Institution of Mechanical Engineers:Part D:Journal of Automobile Engineering,2008,222(10):1813-1825.
    [8] SONG X,AHMADIAN M,SOUTHWARD S.An Adaptive Semiactive Control Algorithm for Magnetorheological Suspension Systems[J].Journal of Vibration & Acoustics,2005,127(5):493-502.
    [9] COLE D J.Fundamental Issues in Suspension Design for Heavy Road Vehicles[J].Vehicle System Dynamics,2001,35(4/5):319-360.
    [10] ELTANTAWIE M A.Decentralized Neuro-fuzzy Control for Half Car with Semi-active Suspension System[J].International Journal of Automotive Technology,2012,13(3):423-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700