用户名: 密码: 验证码:
基于X射线计算断层扫描图像的混凝土细观断裂模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Meso-scale fracture modelling of concrete based on X-ray computed tomography images
  • 作者:任文渊 ; 杨贞军 ; 黄宇劼
  • 英文作者:REN Wenyuan;YANG Zhenjun;HUANG Yujie;School of Mechanical,Aerospace and Civil Engineering,the University of Manchester;College of Civil Engineering and Architecture,Zhejiang University;
  • 关键词:混凝土 ; X射线计算机断层扫描 ; 基于图像建模 ; 黏结裂缝模型 ; 细观结构 ; 有限元法
  • 英文关键词:concrete;;X-ray computed tomography;;image based modelling;;cohesive zone model;;mesoscale structure;;finite element model
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:School of Mechanical Aerospace and Civil Engineering,the University of Manchester;浙江大学建筑工程学院;
  • 出版日期:2015-01-09 18:05
  • 出版单位:水利学报
  • 年:2015
  • 期:v.46;No.463
  • 基金:国家973项目(2013CB035901);; 教育部博士点基金(2013010111002);; 英国EPSRC(EP/J019763/1)
  • 语种:中文;
  • 页:SLXB201504010
  • 页数:8
  • CN:04
  • ISSN:11-1882/TV
  • 分类号:78-85
摘要
对混凝土试块进行了X射线计算机断层扫描(XCT)原位试验,提出了基于XCT图像的细观有限元断裂模型。此模型利用微观XCT图像信息高精度地模拟混凝土中的各相组成材料,即骨料、水泥浆以及孔洞,从而考虑了真实材料的非均质性。采用零厚度黏结裂缝单元进行了断裂模拟,裂缝单元被预先嵌入到水泥砂浆中以及其与骨料的交界面处,用于表征潜在裂纹。这些裂缝单元采用应力-相对位移本构关系来表征骨料咬合、裂缝面间的摩擦以及材料的黏结等作用。对该模型进行了混凝土单轴受拉数值仿真,通过与文献中试验以及模拟结果的对比,初步证实了该方法的有效性。
        Meso-scale two-dimensional finite element models are developed for fracture modelling in concretebased on images from an in-situ microscale X-ray Computed Tomography test. In the models,the materialheterogeneity is characterised by real multi-phases,namely,aggregates,cement and voids. Zero-thicknesscohesive interface elements with normal/shear traction-separation constitutive laws are embedded within ce-ment and on aggregate-cement interfaces to simulate potential cracks. Simulations of uniaxial tension testswere carried out. The results show good qualitative and quantitative agreement with experimental observa-tions and simulations from literatures.
引文
[1]Lilliu G,van Mier J G M.3D lattice type fracture model for concrete[J].Engineering Fracture Mechanics,2003,70(7-8):927-941.
    [2]López C,Carol I,Aguado A.Meso-structural study of concrete fracture using interface elements.Ⅰ:numerical model and tensile behaviour[J].Materials and Structures,2008,41(3):583-599.
    [3]Skarzyński L,Tejchman J.Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending[J].European Journal of Mechanics-A/Solids,2010,29(4):746-760.
    [4]Yin A Y,Yang X H,Gao H.Tensile fracture simulation of random heterogeneous asphalt mixture with cohesive crack model[J].Engineering Fracture Mechanics,2012,92(0):40-55.
    [5]Xu X F.A multiscale stochastic finite element method on elliptic problems involving uncertainties[J].Computer Methods in Applied Mechanics and Engineering,2007,196:2723-2736.
    [6]Xu X F,Chen X.Stochastic homogenization of random elastic multi-phase composites and size quantification of representative volume element[J].Mechanics of Materials,2009,41(2):174-186.
    [7]Yang Z J,Su X T,Chen J F,et al.Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials[J].International Journal of Solids and Structures,2009,46(17):3222-3234.
    [8]Su X T,Yang Z J,Liu G H.Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasibrittle materials:A 3D study[J].International Journal of Solids and Structures,2010,47:2336-2345.
    [9]Yue Z Q,Chen S,Tham L G.Finite element modeling of geomaterials using digital image processing[J].Computers and Geotechnics,2003,30(5):375-397.
    [10]Michailidis N,Stergioudi F,Omar H,et al.An image-based reconstruction of the 3D geometry of an Al opencell foam and FEM modeling of the material response[J].Mechanics of Materials,2010,42(2):142-147.
    [11]Carlson W D.Three-dimensional imaging of earth and planetary materials[J].Earth and Planetary Science Letters,2006,249(3-4):133-147.
    [12]Babout L,Marrow T J,Engelberg D,et al.X-ray microtomographic observation of intergranular stress corrosion cracking in sensitised austenitic stainless steel[J].Materials Science and Technology,2006,22(9):1068-1075.
    [13]Marrow T J,Babout L,Jivkov A P,et al.Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel[J].Journal of Nuclear Materials,2006,352(1-3):62-74.
    [14]Qian L,Toda H,Uesugi K,et al.Three-dimensional visualization of ductile fracture in an Al-Si alloy by highresolution synchrotron X-ray microtomography[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2008,483:293-296.
    [15]Kerckhofs G,Schrooten J,Cleynenvreuqel T,et al.Validation of x-ray microfocus computed tomography as an imaging tool for porous structures[J].Review of Scientific Instruments,2008,79(1):Paper No.013711.
    [16]Drummond J L,De Carlo F,Super B J.Three-dimensional tomography of composite fracture surfaces[J].Journal of Biomedical Materials Research Part B-Applied Biomaterials,2005,74B(2):669-675.
    [17]Garboczi E J.Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics:Application to aggregates used in concrete[J].Cement and Concrete Research,2002,32(10):1621-1638.
    [18]Wang L B,Frost J D,Voyjadjis G Z.Quantification of damage parameters using X-ray tomography images[J].Mechanics of Materials,2003,35:777-790.
    [19]Hollister S J,Brennan J M,Kikuchi N.A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress[J].Journal of Biomechanics,1994,27(4):433-444.
    [20]Terada K,Miura T,Kikuchi N.Digital image-based modelling applied to the homogenization analysis of composite materials[J].Computational Mechanics,1997,20(4):331-346.
    [21]Ali J,Farooqi J K,Buckthorpe D,et al.Comparative study of predictive FE methods for mechanical properties of nuclear composites[J].Journal of Nuclear Materials,2009,383(3):247-253.
    [22]Sharma R,Mahajan P,Mittal R K.Fiber bundle push-out test and image-based finite element simulation for 3D[J].Carbon Composites,Carbon,2012,50(8):2717-2725.
    [23]Mostafavi M,Baimpas N,Tarleton E,et al.Three-dimensional crack observation,quantification and simulation in a quasi-brittle material[J].Acta Materialia,2013,61(16):6276-6289.
    [24]Jivkov A P,Engelberg D L,Stein R,et al.Pore space and brittle damage evolution in concrete[J].Engineering Fracture Mechanics,DOI:http://dx.doi.org/10.1016/j.engfracmech.2013.05.007.
    [25]Yang Z J,Ren W Y,Mostafavi M.Characterisation of 3D fracture evolution in concrete using in-situ x-ray computed tomography testing and digital volume correlation[C]//VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures.Toledo,Spain,CIMNE,2013.
    [26]Yang Z J,Chen J F.Fully automatic modelling of cohesive discrete crack propagation in concrete beams using local arc-length methods[J].International Journal of Solids and Structures,2004,41(3-4):801-826.
    [27]Hordijk D A.Tensile and tensile fatigue behaviour of concrete:experiments,modelling and analyses[J].Heron,1992,37(1):1-79.
    [28]Yin A Y,Yang X H,Yang Z J.2D and 3D Fracture Modeling of Asphalt Mixture with Randomly Distributed Aggregates and Embedded Cohesive Cracks[J].Procedia IUTAM,2013,6(10):114-122.
    [29]谢中华.MATLAB统计分析与应用:40个案例分析[M].北京:北京航空航天大学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700