用户名: 密码: 验证码:
3种中分子量蛋白对镍钛和不锈钢弓丝抗腐蚀能力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of three kinds of medium molecular weight proteins on the corrosion resistance of Ni-Ti and stainless steel arch wires
  • 作者:崔野 ; 黄梓濡 ; 王春林 ; 刘从华 ; 张超
  • 英文作者:CUI Ye;HUANG Ziru;WANG Chunlin;LIU Conghua;ZHANG Chao;Department of Orthodontics, Stomatological Hospital, Southern Medical University;
  • 关键词:腐蚀 ; 镍钛合金 ; 不锈钢合金 ; 蛋白吸附 ; 纤维蛋白原 ; 黏蛋白 ; 免疫球蛋白G
  • 英文关键词:Corrosion;;Ni-Ti alloy;;Stainless steel alloy;;Protein adsorption;;Fibrinogen;;Mucin;;Immunoglobulin G
  • 中文刊名:GDYB
  • 英文刊名:Journal of Prevention and Treatment for Stomatological Diseases
  • 机构:南方医科大学口腔医院正畸科;
  • 出版日期:2019-01-31 17:41
  • 出版单位:口腔疾病防治
  • 年:2019
  • 期:v.27;No.207
  • 基金:国家自然科学基金青年科学基金项目(81801007);; 广东省自然科学基金-博士启动纵向协同项目(2018A030310442);; 广东省医学科学技术研究基金项目(A2017270)
  • 语种:中文;
  • 页:GDYB201902003
  • 页数:7
  • CN:02
  • ISSN:44-1724/R
  • 分类号:21-27
摘要
目的探索不同类型的蛋白对合金抗腐蚀能力的影响及其机制,以期为镍钛和不锈钢弓丝在临床上的安全应用及表面改性提供参考。方法采用动电位极化法测试纤维蛋白原、IgG或黏蛋白对镍钛和不锈钢弓丝抗电化学腐蚀能力的影响,并用循环极化法检测三种蛋白处理后表面钝化膜的修复能力。电感耦合等离子体发射光谱法(inductively coupled plasma optical emission spectrometer, ICP-OES)测定腐蚀产物的类型,并对腐蚀后表面形貌进行扫描电镜和原子显微镜分析。结果添加纤维蛋白原、IgG或黏蛋白对同一合金的抗腐蚀能力影响不同。添加蛋白能够降低不锈钢合金的抗腐蚀能力,可减缓镍钛合金的腐蚀进程。添加黏蛋白能够提高镍钛合金抗腐蚀性和表面钝化膜的修复能力。与黏蛋白及IgG相比,纤维蛋白原能够降低镍钛和不锈钢合金的抗点蚀能力。结论不同类型的蛋白能与弓丝发生作用,在表面形成不同的沉积形貌,并参与合金的腐蚀过程。
        Objective To explore the influence and mechanism of different types of proteins on the corrosion resistance of alloy to provide a reference for the safe application and surface modification of nickel-titanium(Ni-Ti) and stainless steel bow wires in the clinic.Methods The effects of fibrinogen, IgG and mucin on the electrochemical corrosion resistance of Ni-Ti and stainless steel arch wires were tested by the potentiodynamic polarization method, and the repair ability of passive films on surfaces treated with the three proteins were tested by the cyclic polarization method.Inductively coupled plasma optical emission spectrometry(ICP-OES) was used to determine the types of corrosion products, and the surface morphology after corrosion was analyzed by scanning electron microscopy(SEM) and atomic forcemicroscopy(AFM).Results The addition of fibrinogen, IgG or mucin to an alloy has different effects on its corrosionresistance. Adding protein can reduce the corrosion resistance of stainless steel alloys and slow the corrosion process of Ni-Ti alloys. The addition of mucin can improve the corrosion resistance of Ni-Ti alloy and the repair ability of passive film. Compared with mucin and IgG, fibrinogen can reduce the pitting resistance of Ni-Ti and stainless steel alloys.Conclusion Different types of proteins interact differently with the arch wire, form different deposition morphologies on the surface, and participate differently in the corrosion process of the alloy.
引文
[1]Karimi S,Salahinejad E,Sharifi E,et al.Bioperformance of chitosan/fluoride-doped diopside nanocomposite coatings deposited on medical stainless steel[J].Carbohydr Polym,2018,202:600-610.
    [2]Bekmurzayeva A,Duncanson WJ,Azevedo HS.Surface modification of stainless steel for biomedical applications:revisiting a century-old material[J].Mater Sci Eng C Mater Biol Appl,2018,93:1073-1089.
    [3]Zhang C,Sun X,Hou X,et al.The corrosion resistance of composite arch wire Laser-Welded by NiTi shape memory alloy and stainless steel wires with Cu interlayer in artificial saliva with protein[J].Int J Med Sci,2013,10(8):1068-1072.
    [4]Mocnik P,Kosec T,Kovac J,et al.The effect of pH,fluoride and tribocorrosion on the surface properties of dental archwires[J].Mater Sci Eng C Mater Biol Appl,2017,78:682-689.
    [5]Van Der Valk J,Bieback K,Buta C,et al.Fetal bovine serum(FBS):past-present-future[J].ALTEX,2018,35(1):99-118.
    [6]Hedberg Y,Wang X,Hedberg J,et al.Surface-protein interactions on different stainless steel grades:effects of protein adsorption,surface changes and metal release[J].J Mater Sci Mater Med,2013,24(4):1015-1033.
    [7]Silva-Bermudez P,Rodil SE.An overview of protein adsorption on metal oxide coatings for biomedical implants[J].Surf Coat Technol,2013,233(16):147-158.
    [8]Pulikkottil VJ,Chidambaram S,Bejoy PU,et al.Corrosion resistance of stainless steel,nickel-titanium,Titanium Molybdenum alloy,and ion-implanted Titanium Molybdenum alloy archwires in acidic fluoride-containing artificial saliva:An study[J].J Pharm Bioallied Sci,2016,8(Suppl 1):S96-S99.
    [9]Rerhrhaye W,Bahije L,El MK,et al.Degradation of the mechanical properties of orthodontic NiTi alloys in the oral environment:an in vitro study[J].Int Orthod,2014,12(3):271-280.
    [10]Dong P,Yao RH,Yan Z,et al.Microstructure and corrosion resistance of Laser-Welded crossed nitinol wires[J].Materials(Basel),2018,11(5):842.
    [11]Bozzini B,Carlino P,D′urzo L,et al.An electrochemical impedance investigation of the behaviour of anodically oxidised Titanium in human plasma and cognate fluids,relevant to dental applications[J].J Mater Sci Mater Med,2008,19(11):3443-3453.
    [12]Horbett TA.Fibrinogen adsorption to biomaterials[J].J Biomed Mater Res A,2018,106(10):2777-2788.
    [13]Rady D,Mubarak R,Abdel Moneim RA.Healing capacity of bone marrow mesenchymal stem cells versus platelet-rich fibrin in tibial bone defects of albino rats:an study[J].F1000Research,2018,7:1573.
    [14]Sakata R,Reddi AH.Platelet-Rich plasma modulates actions on articular cartilage lubrication and regeneration[J].Tissue Eng Part B Rev,2016,22(5):408-419.
    [15]Kato K,Lillehoj EP,Lu W,et al.MUC1:the first respiratory mucin with an anti-inflammatory function[J].J Clin Med,2017,6(12):110.
    [16]Lundin M,Hedberg Y,Jiang T,et al.Adsorption and protein-induced metal release from chromium metal and stainless steel[J].JColloid Interface Sci,2012,366(1):155-164.
    [17]Ledsgaard L,Jenkins TP,Davidsen KA,et al.Antibody cross-reactivity in antivenom research[J].Toxins(Basel),2018,10(10):393.
    [18]Standard test method for conducting cyclic potentiodynamic polarization measurements to determine the corrosion susceptibility of small implant devices.ASTM standard F 2129-06[Z],2006.
    [19]Geis-Gerstorfer J,Schille C,Schweizer E,et al.Blood triggered corrosion of Magnesium alloys[J].Mater Sci Eng B,2011,176(20):1761-1766.
    [20]Heravi F,Moayed MH,Mokhber N.Effect of fluoride on nickel-titanium and stainless steel orthodontic archwires:an in-vitro study[J].J Dent(Tehran),2015,12(1):49-59.
    [21]Wagener V,Faltz AS,Killian MS,et al.Protein interactions with corroding metal surfaces:comparison of Mg and Fe[J].Faraday Discuss,2015,180:347-360.
    [22]刘嘉俊,孟玉坤.不同热处理对自研新型高钯牙科合金腐蚀行为的影响[J].口腔疾病防治,2017,25(2):80-86.
    [23]Zhang C,Sun XH,Zhao S,et al.Susceptibility to corrosion and in vitro biocompatibility of a laser-welded composite orthodontic arch wire[J].Ann Biomed Eng,2014,42(1):222-230.
    [24]Siddiqui D,Sivan S,Weaver JD,et al.Effect of wire fretting on the corrosion resistance of common medical alloys[J].J Biomed Mater Res B Appl Biomater,2017,105(8):2487-2494.
    [25]张超,肖轺穆,刘楚峰,等.复合弓丝在含酶人工唾液中的抗腐蚀性能研究[J].口腔疾病防治,2016,24(11):645-650.
    [26]Zhang C,Sun X.Susceptibility to stress corrosion of laser-welded composite arch wire in acid artificial saliva[J].Adv Mater Sci Eng,2013,3:171-177.
    [27]Zhang C,Zhao S,Sun XM,et al.Corrosion of laser-welded NiTi shape memory alloy and stainless steel composite wires with a copper interlayer upon exposure to fluoride and mechanical stress[J].Corros Sci,2014,82(5):404-409.
    [28]Zhang C,Liu JM,Yu WW,et al.Susceptibility to corrosion of laser welding composite arch wire in artificial saliva of salivary amylase and pancreatic amylase[J].Mater Sci Eng C Mater Biol Appl,2015,55:267-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700