用户名: 密码: 验证码:
500T型热风炉燃烧通道结构设计及试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural Design and Experimental Study of Combustion Channel for 500T-type Hot Blast Stove
  • 作者:谷东伟 ; 张学文 ; 姜振海 ; 杨帅 ; 石佩茹
  • 英文作者:GU Dongwei;ZHANG Xuewen;JIANG Zhenhai;YANG Shuai;SHI Peiru;School of Mechanical and Electrical Engineering, Changchun Universityof Technology;
  • 关键词:热风炉 ; 温度场 ; 燃烧特性 ; 数值模拟
  • 英文关键词:hot-blast furnace;;temperature field;;combustion characteristic;;numerical simulation
  • 中文刊名:JXGU
  • 英文刊名:Mechanical Engineer
  • 机构:长春工业大学机电工程学院;
  • 出版日期:2019-05-10
  • 出版单位:机械工程师
  • 年:2019
  • 期:No.335
  • 基金:工业和信息化部智能制造新模式应用项目(高硅铝合金无缸套发动机缸体3000吨高真空压铸智能车间新模式应用)
  • 语种:中文;
  • 页:JXGU201905005
  • 页数:4
  • CN:05
  • ISSN:23-1196/TH
  • 分类号:18-20+31
摘要
针对粮食烘干热风炉试验成本投入大、煤粉燃烧配风控制严重依赖手工调节的问题,设计了热风炉燃烧通道结构,优化了配风参数,并进行了数值模拟试验。为了验证仿真结果的正确性,建立了热风炉实际模型,按照设计参数进行了煤粉燃烧试验。通过数值仿真结果和现场采集数据对比,发现数值模拟测得温度值与现场试验测量值误差低于5%。该结果对该粮食烘干用热风炉的设计、运行和改造具有一定的参考意义。
        Aiming at the problems of high test cost of grain drying hot blast stove and heavy dependence of manual adjustment on pulverized coal combustion air distribution control, this paper designs the combustion channel structure of hot blast stove, calculates the air distribution parameters, and carries out numerical simulation test. In order to verify the correctness of the simulation results, a practical model of hot blast stove is established, and pulverized coal combustion test is carried out according to the design parameters. By comparing the numerical simulation results with the field data, it is found that the error between the numerical simulation and the field test is less than 5%. The results have certain reference significance for the design, operation and transformation of the hot stove for grain drying.
引文
[1]李杰.我国粮食干燥节能减排技术发展现状与展望[J].粮食储藏,2011,40(4):13-16.
    [2]VASCELLARI M,CAU G.Influence of turbulence-chemical interaction on CFD pulverized coal MILD combustion modeling[J].Fuel,2012,101:90-101.
    [3]WEBER R,SMART J P,KAMP W.On the(MILD)combustion of gaseous,liquid,and solid fuels in high temperature preheated air[J].Proc Combust Inst,2005,30(2):2623-2629.
    [4]VASCELLARI M,CAU G.Influence of turbulence-chemical interaction on CFD pulverized coal MILD combustion modeling[J].Fuel,2011,42(9):301-327.
    [5]ADAMCZYK W P,BIALECKI R A,DITARANTO M,et,al.CFDmodeling and thermodynamic analysis of a concept of a MILD-OXY combustion large scale pulverized coal boiler[J].Energy,2017,140(1):1305-1315.
    [6]吴照斌.燃用生物质粮食烘干热风炉优化设计及实验研究[D].合肥:合肥工业大学,2016.
    [7]王英瑞.热风炉结构优化设计与分析[D].哈尔滨:哈尔滨工业大学,2006.
    [8]丁小骄.应用于煤粉锅炉柔和燃烧技术试验研究[D].北京:中国科学院大学,2016.
    [9]张诚.直燃式热烟气炉内部温度场流场数值模拟[D].沈阳:东北大学,2012.
    [10]PRIELER R,MAYRHOFER M,GABER C,et,al.CFD-based optimization of a transient heating process in a natural gas fired furnace using neural networks and genetic algorithms[J].Applied Thermal Engineering,2018,138:217-234.
    [11]方海泉,薛惠锋,李宁,等.基于贝叶斯神经网络遗传算法的锅炉燃烧优化[J].系统仿真学报,2015,27(8):1790-1795.
    [12]徐荣田,贝叶斯神经网络和遗传算法结合在锅炉燃烧优化上的应用[J].发电设备,2016,30(2):85-87.
    [13]赵振.基于改进风驱动算法的循环流化床锅炉燃烧优化研究[D].秦皇岛:燕山大学,2017.
    [14]刘瑞春.生物质热风炉炭化燃料燃烧特性及配风技术研究[D].哈尔滨:哈尔滨理工大学,2016.
    [15]魏聿廷.热风炉最优燃烧控制系统研究[D].包头:内蒙古科技大学,2015.
    [16]段旭琴,蒙格泰,金龙哲,等.燃烧效果最佳的混煤喷吹配比计算方法[J].北京科技大学学报,2012,34(11):1319-1323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700