用户名: 密码: 验证码:
GPM卫星资料在分析“杜苏芮”台风降水结构中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of GPM Data in Analysis of Precipitation Structure of Typhoon Doksuri
  • 作者:朱梅 ; 何君涛 ; 方勉 ; 尹群
  • 英文作者:ZHU Mei;HE Juntao;FANG Mian;YIN Qun;Sanya Meteorological Bureau of Hainan Province;Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province;
  • 关键词:GPM ; 台风“杜苏芮” ; 降水率 ; 降水类型 ; 微波亮温
  • 英文关键词:GPM;;typhoon Doksuri;;precipitation rate;;precipitation type;;microwave brightness temperature
  • 中文刊名:GSQX
  • 英文刊名:Journal of Arid Meteorology
  • 机构:海南省三亚市气象局;海南省南海气象防灾减灾重点实验室;
  • 出版日期:2018-12-31
  • 出版单位:干旱气象
  • 年:2018
  • 期:v.36
  • 基金:三亚城市雨涝灾害防御研究项目(2013YD85);; 卫星资料在海南岛的适用性分析项目(HNQXQN201805)共同资助
  • 语种:中文;
  • 页:GSQX201806014
  • 页数:6
  • CN:06
  • ISSN:62-1175/P
  • 分类号:105-110
摘要
利用GPM卫星探测的数据产品2A-DPR和1C-GMI以及三亚市30个自动气象站降雨数据对2017年第19号台风"杜苏芮"的降水率、雨顶高度、降水类型、降水微波信号、云水路径、冰水路径、降水三维结构等特征进行了分析。结果表明:"杜苏芮"加强阶段,近地面降水率主要集中在20. 0 mm·h-1以下,部分区域为40. 0~100. 0 mm·h-1,最大值高达299. 8 mm·h-1;雨顶高度集中在6~10 km,最大为12 km;降水率和雨顶高度的大值区均处在台风外围的螺旋雨带中;台风降水中层云降水占68. 5%,对流降水占27. 1%,对流云降水的平均降水率是层云降水的3. 2倍;低频(18. 9 GHz)、中频(89. 0 GHz)和高频(183. 31±8 GHz)的微波亮温表明台风云系中存在大量的水粒子和冰粒子,且高频对冰粒子的探测更为敏感;台风螺旋云带中对流发展旺盛,且存在大量的降水柱,近地面降水率较大的区域所对应的降水柱也较为密实,降水柱的高度也比较高。
        Based on the 2 A-DPR,1 C-GMI products of GPM( global precipitation measurement) and the precipitation data of 30 automatic meteorological stations in Sanya of Hainan Province,the precipitation rate near surface,rain top height,precipitation type,microwave signal,cloud water path,ice water path and the 3 D structure of precipitation of the 19 th typhoon Doksuri in 2017 were analyzed. The results show that at the strengthening stage of the typhoon Doksuri,the precipitation rate near surface was mainly less than 20. 0 mm·h-1,and in some parts it ranged from 40. 0 to 100. 0 mm·h-1,and the maximum of it was over 299. 8 mm·h-1.The height of rain top was between 6 and 10 km,and the maximum height of the rain top reached 12 km. The higher value of precipitation rate near surface and rain top height appeared in the spiral cloud band outside the typhoon. The stratiform precipitation ratio was 68. 5%,and the convective precipitation ratio was 27. 1%,while the average convective precipitation rate was 3. 2 times of the stratiform precipitation rate. The low frequency( 18. 9 GHz),intermediate frequency( 89. 0 GHz) and high frequency( 183 ± 8 GHz) microwave brightness temperatures reflected that there were a large number of water and ice particles in the typhoon,and the high frequency channel was more sensitive to detection of the ice particles. At the developing stage of the typhoon,there were a lot of precipitation columns in the spiral cloud belt of the typhoon. The higher value of the precipitation rate near surface corresponded to the denser and higher precipitation columns.
引文
[1]张雅斌,武麦凤,侯建忠,等.陕西4次台风远距离暴雨过程的水汽条件对比[J].干旱气象,2014,32(5):788-797.
    [2]王文波,王旭,杨明,等.台风“达维”移动路径成因分析[J].干旱气象,2014,32(1):75-80.
    [3]陆桂荣,王文,于怀征,等.台风“达维”对山东日照“08. 03”暴雨天气过程的影响分析[J].干旱气象,2014,32(2):256-262.
    [4]黄小丹,黄先伦,麦宗天,等. 3个登陆台风引发阳江特大暴雨的水汽输送对比分析[J].气象与环境科学,2015,38(3):61-69.
    [5]沈晓玲,孙琦旻.“菲特”台风暴雨成因分析[J].气象与环境科学,2014,37(4):33-39.
    [6]陈联寿,许映龙.中国台风特大暴雨综述[J].气象与环境科学,2017,40(1):3-10.
    [7]黄昌兴,江敦双,李欣,等.影响山东半岛的两次台风暴雨对比分析[J].气象与环境科学,2015,38(3):70-77.
    [8]吴蓁,李朝兴,梁钰. 0505台风低压倒槽后退东移的原因分析[J].气象与环境科学,2015,38(3):37-46.
    [9]陈联寿,罗哲贤,李英.登陆热带气象研究的进展[J].气象学报,2004,62(5):541-549.
    [10]傅云飞,刘栋,王雨,等.热带测雨卫星综合探测结果之“云娜”台风降水云与非降水云特征[J].气象学报,2007,65(3):316-328.
    [11]卢美圻,魏鸣. GPM资料在分析“彩虹”台风降水垂直结构中的应用[J].遥感技术与应用,2017,32(5):904-912.
    [12]黄强,陈子燊,孔兰,等.联合干旱指数在干旱监测中的应用:以广东韶关地区为例[J].干旱气象,2014,32(4):499-504.
    [13]王宝鉴,黄玉霞,魏栋,等. TRMM卫星对青藏高原东坡一次大暴雨强降水结构的研究[J].气象学报,2017,75(6):966-980.
    [14]HOU A Y,KAKAR R K,NEECK S,et al. The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society,2014,95(5):701-722.
    [15] TANG G,ZENG Z,LONG D,et al. Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin:is day-1 IMERG a good successor for TMPA3B42V7[J]. Journal of Hydrometeorology,2016,17(1):121-137.
    [16]唐国强,万玮,曾子悦,等.全球降水测量(GPM)计划及其最新进展综述[J].遥感技术与应用,2015,30(4):607-615.
    [17]张奡祺,傅云飞. GPM卫星双频测雨雷达探测降水结构的个例特征分析[J].大气科学,2018,42(1):33-51.
    [18]金晓龙,邵华,张弛,等. GPM卫星降水数据在天山山区的适用性分析[J].自然资源学报,2016,31(12):2074-2085.
    [19]吴琼,仰美霖,窦芳丽. GPM双频降水测量雷达对降雪的探测能力分析[J].气象,2017,43(3):348-353.
    [20]ZHANG S,WANG D,QIN Z,et al. Assessment of the GPM and TRMM precipitation products using the rain gauge network over Tibetan Plateau[J]. Journal of Meteorological Research,2018,32:324-336.
    [21]余占猷.利用DPR和GMI探测结果对东亚降水云的个例分析研究[D].北京:中国科学技术大学,2016:6-33.
    [22]刘鹏,李崇银,王雨,等.基于TRMM PR探测的热带及副热带对流和层云降水气候特征分析[J].中国科学:地球科学,2012,42(9):1358-1369.
    [23]刘圣楠,崔晓鹏.“碧利斯”(2006)暴雨过程降水强度和降水效率分析[J].大气科学,2018,42(1):192-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700