用户名: 密码: 验证码:
基于霍尔—埃鲁特电解法制备铝合金技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Production of aluminum alloys in electrolysis cells based on Hall-Héroult process: a review
  • 作者:张城 ; 薛济来 ; 刘轩 ; 李想 ; 朱骏 ; 刘翘楚 ; 钱义
  • 英文作者:ZHANG Cheng;XUE Ji-lai;LIU Xuan;LI Xiang;ZHU Jun;LIU Qiao-chu;QIAN Yi;School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing;State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing;China International Engineering Consulting Corporation;China Automotive Battery Research Institute;
  • 关键词:铝合金 ; 铝电解 ; 霍尔-埃鲁特法 ; 金属间化合物 ; 分解电压
  • 英文关键词:aluminum alloy;;aluminum electrolysis;;Hall-Héroult process;;intermetallic compound;;decomposition voltage
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:北京科技大学冶金与生态工程学院;北京科技大学钢铁冶金国家重点实验室;中国国际工程咨询公司;国联汽车动力电池研究院;
  • 出版日期:2019-07-15
  • 出版单位:工程科学学报
  • 年:2019
  • 期:v.41;No.303
  • 基金:国家自然科学基金资助项目(51434005,51704020,51874035)
  • 语种:中文;
  • 页:BJKD201907001
  • 页数:12
  • CN:07
  • ISSN:10-1297/TF
  • 分类号:4-15
摘要
现代霍尔-埃鲁特(H-H)法铝电解槽规模大、工艺成熟,利用该法电解制备铝基合金具有明显技术和经济优势.目前国内外研究主要是在现有氟化物熔盐体系中添加多种合金元素氧化物,合理调节电解质成分和工艺参数,借助共电沉积和欠电位机制,成功制备出多种铝基合金,工业化试验亦有初步成果.本文综合分析了上述进展及发展前景,并指出在实现合金组成精准调控、合金产品成分均匀化、电解槽高电流效率运行等方面存在的问题,旨在为相关研究提供参考.
        Modern large-scale Hall-Héroult( H-H) aluminum electrolysis cells have super high amperage and a well-developed process technology; thus,they present great technical and economic advantages for the production of Al-based alloys. Compared with the traditional alloy production methods,H-H-based processes have a great potential in improving product quality,simplifying production process,and reducing energy consumption. In this review,the major achievements in the production of various common aluminum alloys,such as Al-RE( rare earth metals),Al-Mg,and Al-Si/Ti alloys using H-H-based processes,were summarized from the domestic and international literature. The main properties of cryolite-based electrolyte systems that determine whether the alloy production can proceed smoothly by H-H process were first discussed based on previous research results. Studies on the electrolyte structure,melting point,and conductivity of the cryolite-based electrolytes with varying compositions were described in details. For producing Albased alloys,the conventional fluorides electrolytes can be modified by adding various oxides of alloying metals. The electrolysis mechanisms of cathode co-deposition and underpotential deposition are usually utilized with the addition of multiple metals oxides,and the electrolyte composition and processing parameters are appropriately adjusted in H-H-based processes. Moreover,the potential distribution in the interfacial reaction processes during electrolysis for the alloying process in electrolyte is proposed based on the existing electrochemical data. In addition,some industrial trials showed promising results for the future development. At present,these trials,especially for Al-Si and Al-Ti alloys,indicate that the contents of alloying elements can be stabilized within a certain range by adjusting electrolyte compositions,current density,feeding cycle,and other parameters. There are,however,problems associated with the accurate control of alloy compositions,the homogenous quality in bulk alloy products,and the electrolysis cell operation with high current efficiency. Further research is needed to address these problems.
引文
[1] Grjotheim K. Aluminium Electrolysis:Fundamentals of the HallHéroult Process. 3rd Ed. Dusseldorf:Aluminum-Verlag,2002
    [2] Qiu Z X. Prebaked Aluminium. Beijing:Metallurgical Industry Press,2006(邱竹贤.预焙槽炼铝.北京:冶金工业出版社,2006)
    [3] Liu Y X,Li J. Morden Alumuniun Electrolysis. Beijing:Metallurgical Industry Press,2008(刘业翔,李劼.现代铝电解.北京:冶金工业出版社,2008)
    [4] Tang D X,Liu Y J,Zhang H J. The Rare Earth Metal Materials.Beijing:Metallurgical Industry Press,2011(唐定骧,刘余九,张洪杰.稀土金属材料.北京:冶金工业出版社,2011)
    [5] Wang X Y,Qiu S T,Zou Z S,et al. Study on steel deoxidation with Al-Ca compound alloy. Chin J Eng,2017,39(5):702(王晓英,仇圣桃,邹宗树,等. Al--Ca复合合金钢水脱氧机理的研究.工程科学学报,2017,39(5):702)
    [6] Kojima Y. Project of platform science and technology for advanced magnesium alloys. Mater Trans,2001,42(7):1154
    [7] Park G H,Kim J T,Park H J,et al. Development of lightweight Mg--Li-Al alloys with high specific strength. J Alloys Compd,2016,680:116
    [8] Abu-Dheir N,Khraisheh M,Saito K,et al. Silicon morphology modification in the eutectic Al-Si alloy using mechanical mold vibration. Mater Sci Eng A,2005,393(1-2):109
    [9] Xiu Z Y,Chen G Q,Wang X F,et al. Microstructure and performance of Al-Si alloy with high Si content by high temperature diffusion treatment. Trans Nonferrous Met Soc China,2010,20(11):2134
    [10] Gao X Z,Liu T H,Li J K,et al. Study and practice of making aluminum and titanium alloy by aluminum electrolysis. Light Met,2006(5):48(高希柱,刘同湖,李景坤,等.电解生产铝钛合金研究与实践.轻金属,2006(5):48)
    [11] Yang S,Yang G Q. Production of Aluminum Alloys by Electrolysis. Beijing:Metallurgical Industry Press,2010(杨昇,杨冠群.电解法生产铝合金.北京:冶金工业出版社,2010)
    [12] Chen Y X. Research progress of preparation of rare earth metals by electrolysis in fluoride salt system. Chin Rare Earths,2014,35(2):99(陈宇昕.氟化物体系电解稀土氧化物制备稀土金属研究.稀土,2014,35(2):99)
    [13] Feng N X. Aluminium Electrolysis. Beijing:Chemical Industry Press,2008(冯乃祥.铝电解.北京:化学工业出版社,2008)
    [14] Kan H M,Ban Y G,Qiu Z X,et al. Liquidus temperature,density and electrical conductivity of electrolyte for aluminum electrolysis. Chin J Process Eng,2007,7(3):604(阚洪敏,班允刚,邱竹贤,等.铝电解质体系初晶温度、密度和电导率.过程工程学报,2007,7(3):604)
    [15] Liu D R,Yang Z H,Li W X,et al. Research on potassium cryolite for low temperature aluminium electrolysis. Light Met,2009(10):18(刘东任,杨占红,李旺兴,等.钾冰晶石低温电解质研究现状.轻金属,2009(10):18)
    [16] Apisarov A,Dedyukhin A,Redkin A,et al. Physical-chemical properties of the KF-Na F-Al F3molten system with low cryolite ratio//TMS 2009 Annual Meeting and Exhibition. San Francisco,2009:401
    [17] Yang J,Graczyk D G,Wunsch C,et al. Alumina solubility in KF-Al F3--based low-temperature electrolyte system//TMS 2007Annual Meeting and Exhibition. Orlando,2007:537
    [18] Liu Q C. Preparation of Al-Sc Alloys by Electrolysis in KF-Al F3-Sc2O3Melts System[Dissertation]. Beijing:University of Science and Technology Beijing,2012(刘翘楚. KF--Al F3-Sc2O3体系直接电解制备铝钪合金基础研究[学位论文].北京:北京科技大学,2012)
    [19] Liu Q S,Xue J L,Zhu J,et al. Effects of additives on the sodium penetration and expansion of carbon-based cathodes during aluminum electrolysis. J Univ Sci Technol Beijing,2008,30(4):403(刘庆生,薛济来,朱骏,等.添加剂对铝电解炭基阴极钠渗透膨胀过程的影响.北京科技大学学报,2008,30(4):403)
    [20] Tian Z L,Lai Y Q,Yin G,et al. Progress on low temperature aluminium electrolysis. Nonferrous Met(Extract Metall),2004(5):26(田忠良,赖延清,银瑰,等.低温铝电解研究进展.有色金属(冶炼部分),2004(5):26)
    [21] Chen J S,Li D X. Molten salts properties and electrolyte compositions with same solubility of alumina at 20℃above liquidus of aluminium electrolyte for Na3Al F6-Al F3--Li F--Mg F2-CaF2system. Light Met,2009(1):22(陈建设,李德祥.铝电解质Na3Al F6-Al F3--Li F-Mg F2--CaF2系初晶温度上20℃的熔盐性质和等溶成分.轻金属,2009(1):22)
    [22] Xu H,Liu W P,Dong R,et al. Study on solubility of Mg O in melt salt. Nonferrous Met(Extract Metall),2011(1):20(徐徽,刘卫平,董瑞,等.氧化镁在熔盐中溶解度的研究.有色金属(冶炼部分),2011(1):20)
    [23] Wu W Y,Sun J Z,Hai L,et al. Solubility of Nd2O3in fluoride molten salt. Chin Rare Earths,1991,12(3):34(吴文远,孙金治,海力,等.氧化钕在氟盐体系中的溶解度.稀土,1991,12(3):34)
    [24] Guo R,Zhai X J,Zhang T A. Dissolution of Sc2O3in nNaF·Al F3-Li F molten salt. J Mater Metall,2008,7(4):264(郭瑞,翟秀静,张廷安.氧化钪在冰晶石--氟化锂体系中的溶解性能.材料与冶金学报,2008,7(4):264)
    [25] Lu G M,Liu X S. Dissolution of Sc2O3in fluoride molten salt.Chin J Nonferrous Met,1999,9(3):624(路贵民,刘学山.氧化钪在nNaF·Al F3--ScF3熔盐体系中的溶解.中国有色金属学报,1999,9(3):624)
    [26] Yang S,Li Q,Gu S Q. Solubility of Sc2O3in nNaF·Al F3-Al2O3melts. Chin J Rare Met,2003,27(3):418(杨昇,李强,顾松青.氧化钪在冰晶石--氧化铝体系中的溶解性能研究.稀有金属,2003,27(3):418)
    [27] Shen X Q,Shen S Y. The influence of valence and properties of rare earth metalls on its solubility in the cryolite-alumina molten salt. Chin Rare Earths,1990(1):59(沈祥清,沈时英.稀土原料的价态与性质对它在冰晶石-氧化铝系熔体中溶解度的影响.稀土,1990(1):59)
    [28] Jentoftsen T E,Lorentsen O A,Dewing E W,et al. Solubility of some transition metal oxides in cryolite-alumina melts:Part II.Solubility of Ti O2. Metall Mater Trans B,2002,33(6):909
    [29] Weill D F. Stability relations in the Al2O3--SiO2system calculated from solubilities in the Al2O3-Na3Al F6system. Geochim Cosmochim Acta,1966,30(2):223
    [30] Lorentsen O A,Jentoftsen T E,Dewing E W,et al. The solubility of some transition metal oxides in cryolite-alumina melts:Part III. Solubility of CuO and Cu2O. Metall Mater Trans B,2007,38(5):833
    [31] Lemaire G,Hebant P,Picard G S. DFT analysis of interfacial processes occurring in the first steps of electrodeposition of nickel from chloride melt. J Mol Struct,1997,419(1-3):1
    [32] Zhou Z Y,Wu B,Dou S S,et al. Thermodynamic properties of elements and compounds in Al--Sc binary system from Ab initio calculations based on density functional theory. Metall Mater Trans A,2014,45(4):1720
    [33] Arkan N,Charifi Z,Baaziz H,et al. Electronic structure,phase stability,and vibrational properties of Ir-based intermetallic compound Ir X(X=Al,Sc,and Ga). J Phys Chem Solids,2015,77:126
    [34] Baehr H D. Thermochemical properties of inorganic substances.Forsch Ingenieurwes,1992,58(4):103
    [35] Knacke O,Kubaschewski O,Hesselmann K. Thermochemical Properties of Inorganic Substances. Forschung im Ingenieurwesen,1992,58(4):103
    [36] Barin I,Platzki G. Thermochemical Data of Pure Substances. 3rd Ed. Weinheim:VCH Verlag,1995
    [37] Adzic R,Yeager E,Cahan B D. Optical and electrochemical studies of underpotential deposition of lead on gold evaporated and single-crystal electrodes. J Electrochem Soc,1974,121(4):474
    [38] Kolb D M,Przasnyski M,Gerischer H. Underpotential deposition of metals and work function differences. J Electroanal Chem Interfacial Electrochem,1974,54(1):25
    [39] Castrillejo Y,Bermejo R,Martínez A M,et al. Application of electrochemical techniques in pyrochemical processes-Electrochemical behaviour of rare earths at W,Cd,Bi and Al electrodes. J Nucl Mater,2007,360(1):32
    [40] Castrillejo Y,Vega A,Vega M,et al. Electrochemical formation of Sc--Al intermetallic compounds in the eutectic Li Cl-KCl. Determination of thermodynamic properties. Electrochim Acta,2014,118:58
    [41] Castrillejo Y,Fernández P,Bermejo M R,et al. Electrochemistry of thulium on inert electrodes and electrochemical formation of a Tm--Al alloy from molten chlorides. Electrochim Acta,2009,54(26):6212
    [42] Castrillejo Y,Fernández P,Medina J,et al. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes. Electrochim Acta,2011,56(24):8638
    [43] Bermejo M R,Barrado E,Martinez A M,et al. Electrodeposition of Lu on W and Al electrodes:Electrochemical formation of Lu-Al alloys and oxoacidity reactions of Lu(III)in the eutectic Li Cl--KCl. J Electroanal Chem,2008,617(1):85
    [44] Bermejo M R,Gomez J,Medina J,et al. The electrochemistry of gadolinium in the eutectic Li Cl-KCl on W and Al electrodes. J Electroanal Chem,2006,588(2):253
    [45] Kononov A,Polyakov E. High-temperature electrochemical synthesis and properties of intermetallic compounds of the Ni--Sc system. Part 1. Electrochemical behaviour of Sc(III)in chloridefluoride melts. J Alloys Compd,1996,239(2):103
    [46] Liu Q C,Xue J L,Zhu J,et al. Preparing aluminium-scandium inter-alloys during reduction process in KF--Al F3--SC2O3melts//TMS 2012 Annual Meeting and Exhibition. Orlando,2012:685
    [47] Nohira T,Kambara H,Amezawa K,et al. Electrochemical formation and phase control of Pr-Ni alloys in a molten Li Cl-KClPr Cl3system. J Electrochem Soc,2005,152(4):C183
    [48] Ji D B,Yan Y D,Zhang M L,et al. Study on electrochemical behavior of La(III)and preparation of Al--La intermetallic compound whiskers in chloride melt. J Electrochem Soc,2016,163(2):D1
    [49] Castrillejo Y,Bermejo M R,Arocas P D,et al. The electrochemical behaviour of the Pr(III)/Pr redox system at Bi and Cd liquid electrodes in molten eutectic Li Cl--KCl. J Electroanal Chem,2005,579(2):343
    [50] Castrillejo Y,Bermejo M R,Barrado E,et al. Electrodeposition of Ho and electrochemical formation of Ho--Al alloys from the eutectic Li Cl-KCl. J Electrochem Soc,2006,153(10):C713
    [51] Zhang Y X. Study on Preparation and Mechanism of Al--Sc and Mg-Li Based Alloys by Electrolysis in Molten Salt[Dissertation].Harbin:Harbin Engineering University,2011(张艳霞.铝钪与镁锂基合金的熔盐电解制备及机理研究[学位论文].哈尔滨:哈尔滨工程大学,2011)
    [52] Chen H H,Chen B X,Lin L J. Preparing Al-Ti--B-RE medium alloys by electrolysis. Jiangxi Nonferrous Met,2001,15(4):15(陈辉煌,陈本孝,林立杰.电解法制取铝钛硼中间合金.江西有色金属,2001,15(4):15)
    [53] Gibilaro M,Massot L,Chamelot P,et al. Study of neodymium extraction in molten fluorides by electrochemical co-reduction with aluminium. J Nucl Mater,2008,382(1):39
    [54] Yu X G,Qiu Z X. Preparation of Al--RE alloy by molten salt electrolysis. Chin Rare Earths,2006,27(6):33(于旭光,邱竹贤.熔盐电解制备稀土铝合金的研究.稀土,2006,27(6):33)
    [55] Liao C F,Luo L S,Wang X,et al. Preparation for Al-Nd intermediate alloy by molten-salt electrolysis method and its mechanism. Chin J Nonferrous Met,2015,25(12):3523(廖春发,罗林生,王旭,等.熔盐电解制备铝钕中间合金及其机理.中国有色金属学报,2015,25(12):3523)
    [56] Zhan L. Practice of RE-Al alloys production with pre-baked Al reduction pot. Gansu Metall,2012,34(6):32(詹磊. 150 kA预焙铝电解槽生产稀土铝中间合金生产实践.甘肃冶金,2012,34(6):32)
    [57] Pang S M,Yan S H,Li Z A,et al. Development on molten salt electrolytic methods and technology for preparing rare earth metals and alloys in China. Chin J Rare Met,2011,35(3):440(庞思明,颜世宏,李宗安,等.我国熔盐电解法制备稀土金属及其合金工艺技术进展.稀有金属,2011,35(3):440)
    [58] Li G Y,Yang S H,Li J D,et al. Preparation of Al--Sc alloys by molten salt electrolysis. Light Met,2007(5):54(李广宇,杨少华,李继东,等.熔盐电解法制备铝钪合金的研究.轻金属,2007(5):54)
    [59] Guo R,Cao W L,Zhai X J,et al. Preparation of Al--Sc application alloys by molten salt electrolysis method. Chin J Rare Met,2008,32(5):645(郭瑞,曹文亮,翟秀静,等.熔盐电解法制备Al-Sc应用合金的工艺研究.稀有金属,2008,32(5):645)
    [60] Teng G C,Zhai X J,Li J F,et al. Study on preparation of AlSc alloys by molten electrolysis. Non-Ferrous Min Metall,2009,25(1):26(縢国春,翟秀静,李俊福,等.铝钪合金的熔盐电解法制备研究.有色矿冶,2009,25(1):26)
    [61] Liu Q C,Xue J L,Zhu J,et al. Processing Al--Sc alloys at liquid aluminum cathode in KF-Al F3molten salt. ECS Trans,2013,50(11):483
    [62] Yang S. The Research on Direct Electrolytic Al-Sc Alloys in Molten Salt[Dissertation]. Zhengzhou:Zhengzhou University,2003(杨昇.电解法生产铝钪合金的研究[学位论文].郑州:郑州大学,2003)
    [63] Qian Y. Fundamental Studies on Preparation of Al-Sc-Zr Alloys by Electrolysis in Molten Salts[Dissertation]. Beijing:University of Science and Technology Beijing,2017(钱义.熔盐电解法制备铝钪锆合金的基础研究[学位论文].北京:北京科技大学,2017)
    [64] Qian Y,Xue J L,Liu Q C,et al. Preparing Al--Sc--Zr alloys in aluminum electrolysis process//TMS 2013 Annual Meeting and Exhibition. San Antonio,2013:1311
    [65] Jung J G,Lee S H,Lee J M,et al. Improved mechanical properties of near-eutectic Al--Si piston alloy through ultrasonic melt treatment. Mater Sci Eng A,2016,669:187
    [66] Puga H,Barbosa J,Costa S,et al. Influence of indirect ultrasonic vibration on the microstructure and mechanical behavior of Al--Si-Cu alloy. Mater Sci Eng A,2013,560:589
    [67] Feng H K,Yu S R,Li Y L,et al. Effect of ultrasonic treatment on microstructures of hypereutectic Al--Si alloy. J Mater Process Technol,2008,208(1-3):330
    [68] Qiu Z X,Zhang M J,Wang J,et al. Preparation of aluminummagnesium master alloys by electrolysis of magnesium oxide in fluoride melts//TMS 1990 Annual Meeting and Exhibition. New Orleans,1990:349
    [69] Yang S H. Study on Preparation Al-Mg Alloy by Molten Salt Electrolysis Method from Magnesium Oxide[Dissertation]. Shenyang:Northeastern University,2008(杨少华.以氧化镁为原料熔盐电解法制备Al--Mg合金的研究[学位论文].沈阳:东北大学,2008)
    [70] Yang S H,Ban Y G,Guo Y H,et al. Preparation of aluminummagnesium alloys from magnesium oxide. J Northeast Univ Nat Sci,2007,28(6):839(杨少华,班允刚,郭玉华,等.以氧化镁为原料生产铝镁合金的研究.东北大学学报(自然科学版),2007,28(6):839)
    [71] Yang S,Wu L,Yang F L,et al. Preparation of aluminum-magnesium alloy from magnesium oxide in RECl3-KCl-Mg Cl2electrolyte by molten salts electrolysis method//TMS 2012 Annual Meeting and Exhibition. Orlando,2012:63
    [72] Qiu Z X,Yu Y X,Zhang M J. Prepare Al--Ti alloy in aluminium reduction cell. Light Met,1986(4):32(邱竹贤,于亚鑫,张明杰.在铝电解槽中生产Al-Ti合金.轻金属,1986(4):32)
    [73] Yu X G,Qiu Z X. Preparation of Al--Ti alloy by electrolysing Ti O2in aluminium bath. J Northeast Univ Nat Sci,2004,25(11):1088(于旭光,邱竹贤. Ti O2电解制取Al--Ti合金.东北大学学报(自然科学版),2004,25(11):1088)
    [74] Wang M X,Liu Z Y,Song T F,et al. Test of producing low--Ti aluminum alloy by reduction and analysis of Ti distribution uniformity in the product. Light Met,2003(4):41(王明星,刘智勇,宋天福,等.电解生产低钛铝合金工业试验及产品中钛分布的均匀性分析.轻金属,2003(4):41)
    [75] Fan G X,Wang M X,Liu Z Y,et al. Grain refinement effects of titanium added to commercial pure aluminum by electrolysis and by master alloys. Chin J Nonferrous Met,2004,14(2):250(范广新,王明星,刘志勇,等.电解加钛与熔配加钛对工业纯铝晶粒细化的作用.中国有色金属学报,2004,14(2):250)
    [76] Yu X G,Qiu Z X. Preparation of Al-Si alloy by molten salt electrolysis. J Northeast Univ Nat Sci,2004,25(5):442(于旭光,邱竹贤.熔盐电解法制取Al--Si合金.东北大学学报(自然科学版),2004,25(5):442)
    [77] Ma S L,Xu M,Lin Y S,et al. Research on Al-Si alloy produced from large aluminum reduction cell. Nonferrous Met(Extract Metall),2011(5):20(马绍良,许敏,林玉胜,等.大型铝电解槽直接生产铝硅合金的研究.有色金属(冶炼部分),2011(5):20)
    [78] Yang G Q,Yang S,Yang Q F,et al. A review on production of Al-Si--Ti alloy by electrolysis. Foundry,1999(4):51(杨冠群,杨升,杨巧芳,等.电解法生产铝硅钛多元合金述评.铸造,1999(4):51)
    [79] Zhou R M,Zhang Z M,Wang J N,et al. Direct production of the aluminum-manganese alloy with the addition of the black manganese in industrial aluminum electrolytic cells. J Tangshan Inst Eng Technol,1988(2):33(周瑞铭,张自铭,王家乃,等.在工业铝电解槽中添加氧化锰直接生产铝-锰合金.唐山工程技术学院学报,1988(2):33)
    [80] Yin Y J,Chen F H,Wen C Z. Industrial test of preparing AlMn alloy by electrolysis. Jiangxi Metall,1988,9(3):43(尹英健,陈芳华,温承志.电解法制取铝锰合金工业试验研究.江西冶金,1988,9(3):43)
    [81] Huang Y K,Xiao H Z,Peng D Q. Industrial test of preparing Al-Si--Ti alloy by electrolysis. Trans Nonferrous Met Soc China,1995,5(2):75(黄英科,肖辉照,彭德泉.电解法直接制取Al-Si--Ti合金工业试验.中国有色金属学报,1995,5(2):75)
    [82] Liao C F,Luo L S,Wang X. Preparation of Al-Cu intermediate alloy by molten-salt electrolytic. Nonferrous Met Sci Eng,2015,6(3):1(廖春发,罗林生,王旭.熔盐电解法制备Al--Cu中间合金.有色金属科学与工程,2015,6(3):1)
    [83] Tang H. Study on Preparation of Al-Cu--Y Intermediate Alloy and Electrochemical Mechanism by Molten Salt Electrolysis[Dissertation]. Ganzhou:Jiangxi University of Science and Technology,2016(汤浩.熔盐电解法制备Al--Cu-Y中间合金及电化学机理研究[学位论文].赣州:江西理工大学,2016)
    [84] Luo L S. Research on Mechanism and Preparation of Al--Cu-Nd Alloy by Molten Salt Electrolysis[Dissertation]. Ganzhou:Jiangxi University of Science and Technology,2015(罗林生.熔盐电解法制备Al-Cu--Nd三元合金及机理研究[学位论文].赣州:江西理工大学,2015)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700