用户名: 密码: 验证码:
三类煤阶煤中汞的赋存形态分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution characteristics of mercury speciation in coals with three different ranks
  • 作者:苏银皎 ; 刘轩 ; 李丽锋 ; 李晓航 ; 姜平 ; 滕阳 ; 张锴
  • 英文作者:SU Yinjiao;LIU Xuan;LI Lifeng;LI Xiaohang;JIANG Ping;TENG Yang;ZHANG Kai;Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University;Shanxi Hepo Power Generation Company Limited;
  • 关键词: ; 赋存形态 ; 煤阶 ; 热解 ; 稳定性 ; 浸取 ; 分布
  • 英文关键词:mercury;;speciation;;coal rank;;pyrolysis;;stability;;leaching;;distribution
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:华北电力大学热电生产过程污染物监测与控制北京市重点实验室;山西河坡发电有限责任公司;
  • 出版日期:2019-01-21 10:59
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金联合基金项目(U1610254);; 中央高校基本科研业务费(2017MS020,2017MS018,2018ZD03)
  • 语种:中文;
  • 页:HGSZ201904036
  • 页数:8
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:324-331
摘要
采用逐级化学提取方法与程序升温热解方法研究了两个煤田三类煤阶六个样品中汞的赋存形态及其热稳定性。煤中汞分为可交换态(F1)、碳酸盐+硫酸盐+氧化物结合态(F2)、硅酸盐+硅铝酸盐结合态(F3)、硫化物结合态(F4)和残渣态(F5),其中F2、F4和F5约占煤中汞总量的90%以上,且F4是煤中汞最主要的赋存形态,占比达45.2%~82.1%。煤中汞的赋存形态与煤阶密切相关,随样品煤化程度加深F4的比例显著提高,但F2和F5逐渐降低,其原因可能是汞在煤变质过程中由碳酸盐、硫酸盐或有机物中逐渐迁移至硫化物中。煤中汞的热稳定性依赖于其赋存形态,其中F1热稳定性最差,在150℃以下全部释放;F3热稳定性最强,析出温度在600℃以上;其余三种结合态汞的释放温度界于以上两者之间,依次为F1         The occurrence and thermal stability of mercury in six samples of three coal ranks in two coal fields were studied by stepwise chemical extraction method and temperature programmed pyrolysis method. The results show that mercury in coal can be divided into five fractions: exchangeable mercury(F1), carbonate+sulfate+oxide bound mercury(F2), silicate+aluminosilicate bound mercury(F3), sulfide bound mercury(F4) and residual mercury(F5).Among them, F2, F4 and F5 account for over 90%, especially F4 ranges from 45.2% to 82.1%. Mercury speciation is heavily related to coal rank in this study. The proportion of F4 is significantly increased with increasing the degree of coalification, whilst both F2 and F5 are gradually decreased, which can be inferred that mercury combined with carbonate, sulfate and organic matter transfer to the sulfide during the metamorphic process of coal. The thermal release characteristics of mercury in coal depend on its speciation. F1 has the weakest thermal stability which completely releases when the temperature is lower than 150℃, but F3 is the strongest with the release temperature above 600℃. The release temperature of the other mercury species is between F1 and F3. As a result,the order of release temperature is F1 < F5 < F2 < F4 < F3. Based on the above findings, it should be an effective method to transform mercury into much more sulfide with stable state for stabilizing mercury speciation in liquid and solid by-products of coal combustion and other related processes.
引文
[1]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社, 2017.National Bureau of Statistics of the People.s Republic of China.China Statistical Yearbook[M]. Beijing:China Statistics Press,2017.
    [2]刘慧敏,王春波,张月,等.温度和赋存形态对燃煤过程中砷迁移和释放的影响[J].化工学报, 2015, 66(11):4643-4651.Liu H M, Wang C B, Zhang Y, et al. Effect of temperature andoccurrence form of arsenic on its migration and volatilizationduring coal combustion[J]. CIESC Journal, 2015, 66(11):4643-4651.
    [3]周劲松,齐攀,侯文慧,等.纳米氧化锌在模拟煤气下吸附单质汞的实验研究[J].燃料化学学报, 2013, 41(11):1371-1377.Zhou J S, Qi P, Hou W H, et al. Elemental mercury removal fromsyngas by nano-ZnO sorbent[J]. Journal of Fuel Chemistry andTechnology, 2013, 41(11):1371-1377.
    [4]郭瑞霞,杨建丽,刘东艳,等.热处理条件对大同煤中微量有害元素变迁规律的影响[J].化工学报, 2003, 54(11):1603-1607.Guo R X, Yang J L, Liu D Y, et al. Influence of thermal oftreatment conditions on transformation of trace elements in Datongcoal[J]. Journal of Chemical Industry and Engineering(China),2003, 54(11):1603-1607.
    [5]魏绍青,滕阳,李晓航,等. 300 MW等级燃煤机组煤粉炉与循环流化床锅炉汞排放特性比较[J].燃料化学学报, 2017, 45(8):1009-1016.Wei S Q, Teng Y, Li X H, et al. Comparison of mercury emissionfrom around 300 MW coal-fired power generation units betweenpulverized boiler and circulating fluidized-bed boiler[J]. Journalof Fuel Chemistry and Technology, 2017, 45(8):1009-1016.
    [6] Zhao H T, Yang G, Gao X, et al. Hg0-temperature-programmedsurface reaction and its application on the investigation of metaloxides for Hg0capture[J]. Fuel, 2016, 181:1089-1094.
    [7] Zhu Y C, Han X J, Huang Z G, et al. Superior activity of CeO2modified V2O5/AC catalyst for mercury removal at low temperature[J]. Chemical Engineering Journal, 2018, 337:741-749.
    [8]李洋,陈敏东,薛志钢,等.燃煤电厂协同脱汞研究进展及强化措施[J].化工进展, 2014, 33(8):2187-2191.Li Y, Chen M D, Xue Z G, et al. Research on synergistic mercuryremoval of coal-fired power plants[J]. Chemical Industry andEngineering Progress, 2014, 33(8):2187-2191.
    [9] Cheng C M, Cao Y, Zhang K, et al. Co-effects of sulfur dioxideload and oxidation air on mercury re-emission in forced-oxidationlimestone flue gas desulfurization wet scrubber[J]. Fuel, 2013,106:505-511.
    [10] Gerald H L, Jaisen N K, Roe H Y. An evaluation of coalpreparation technologies for controlling trace element emissions[J]. Fuel Processing Technology, 2000, 60(3):407-422.
    [11] Lopez A A M, Diaz S M, Garcia A B, et al. Evaluation of mercuryassociations in two coals of different rank using physicalseparation procedures[J]. Fuel, 2006, 85(10):1389-1395.
    [12] Diehl S F, Goldhaber M B, Hatch J R. Modes of occurrence ofmercury and other trace elements in coals from the warrior field,Black Warrior Basin, Northwestern Alabama[J]. Journal of CoalGeology, 2004, 59(3):193-208.
    [13] Michael E B, Ronald H A, James D C, et al. Geologic setting andcharacterization of coals and the modes of occurrence of selectedelements from the Franklin coal zone, Puget Group, John HenryNo. 1 mine, King County, Washington, USA[J]. InternationalJournal of Coal Geology, 2005, 63(3/4):247-275.
    [14]罗小雨,苏胜,向军,等.汞在MnOx-CeO2/γ-Al2O3催化剂表面的赋存形态分析[J].化工学报, 2015, 66(6):2082-2088.Luo X Y, Su S, Xiang J, et al. Speciation of mercury formed onMnOx-CeO2/γ-Al2O3catalyst surface[J]. CIESC Journal, 2015, 66(6):2082-2088.
    [15] Rumayor M, Gsllego J R, Rodriguez V E, et al. An assessment ofthe environmental fate of mercury species in highly pollutedbrownfields by means of thermal desorption[J]. Journal ofHazardous Materials, 2017, 325:1-7.
    [16] Feng X B, Lu J Y, Gregoire D C, et al. Analysis of inorganicmercury species associated with airborne particulate matter/aerosols:method development[J]. Analytical and BioanalyticalChemistry, 2004, 380(4):683-689.
    [17] Harald B, Stefano C, Stefano C. Mercury speciation in sedimentsaffected by dumped mining residues in the drainage area of the Idrija mercury mine[J]. Environment Science Technology, 2000,34(6):2330-2336.
    [18] Strezov V, Evans T J, Ziolkowski A, et al. Mode of occurrence andthermal stability of mercury in coal[J]. Energy and Fuels, 2010, 24(1):53-57.
    [19] Uruski L, Gorecki J, Macherzynski M, et al. The ability of Polishcoals to release mercury in the process of thermal treatment[J].Fuel Processing Technology, 2015, 140:12-20.
    [20] Zheng L G, Liu G J, Qi C C, et al. The use of sequential extractionto determine the distribution and modes of occurrence of mercuryin Permian Huaibei coal, Anhui Province, China[J]. InternationalJournal of Coal Geology, 2008, 73(2):139-155.
    [21] Method 29—Determination of Metals Emissions from StationarySources[S]. United States:United States Environmental ProtectionAgency, 2009.
    [22] Tessier P, Bisson M. Sequential extraction procedure for thespeciation of particulate trace metals[J]. Analytical Chemistry,1979, 51(7):844-851.
    [23] Palmer C A, Mroczkowski S J, Finkelman R B, et al. The use ofsequential leaching to quantify the modes of occurrence ofelements in coal[C]//Pittsburgh Coal Conference. Pittsburgh, PA,United States, 1998.
    [24] Panyametheekul S. An operationally defined method to determinethe speciation of mercury[J]. Environmental Geochemistry andHealth, 2004, 26(1):51-57.
    [25] Lopez A A M, Yuan Y, Perry R, et al. Analysis of mercury speciespresent during coal combustion by thermal desorption[J]. Fuel,2010, 89(3):629-634.
    [26] Luo G Q, Yao H, Xu M H, et al. Identifying modes of occurrenceof mercury in coal by temperature programmed pyrolysis[J].Proceedings of the Combustion Institute, 2011, 33(2):2763-2769.
    [27]郭少青,杨建丽,刘振宇.晋城煤中汞的热稳定性与赋存形态的研究[J].燃料化学学报, 2009, 37(1):115-118.Guo S Q, Yang J L, Liu Z Y. Thermal stability and occurrence offorms of mercury in Jincheng coal[J]. Journal of Fuel Chemistryand Technology, 2009, 37(1):115-118.
    [28]赵峰华.煤中有害微量元素分布赋存机制及燃煤产物淋滤实验研究[D].北京:中国矿业大学, 1997.Zhao F H. Study on the mechanism of distributions andoccurrences of hazardous minor and trace elements in coal andleaching experiments of coal combustion residues[D]. Beijing:China University of Mining&Technology, 1997.
    [29]吴辉.燃煤汞释放及转化的实验与机理研究[D].武汉:华中科技大学, 2011.Wu H. Experimental and mechanism study on mercury emissionand transformation during coal combustion[D]. Wuhan:HuazhongUniversity of Science&Technology, 2011.
    [30] Cláudia C W, Rolf D W, Wilson D F. Mercury speciation incontaminated soils by thermal release analysis[J]. Water, Air andSoil Pollution, 1996, 89:399-416.
    [31] Finkelman R B. Modes of occurrence of potentially hazardouselements in coal:levels of confidence[J]. Fuel ProcessingTechnology, 1994, 39(1/2/3):21-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700