用户名: 密码: 验证码:
基于宽禁带GaN基异质结结构的垂直型高温霍尔传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Demonstration of wide-bandgap GaN-based heterojunction vertical Hall sensors for high-temperature magnetic field detection
  • 作者:曹亚庆 ; 黄火林 ; 孙仲豪 ; 李飞雨 ; 白洪亮 ; 张卉 ; 孙楠 ; Yung ; C.Liang
  • 英文作者:Cao Ya-Qing;Huang Huo-Lin;Sun Zhong-Hao;Li Fei-Yu;Bai Hong-Liang;Zhang Hui;Sun Nan;Yung C.Liang;School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology;School of Physics, Dalian University of Technology;Department of Electrical and Computer Engineering, National University of Singapore;
  • 关键词:磁场传感器 ; 铝镓氮/氮化镓异质结 ; 二维电子气 ; 高温稳定性
  • 英文关键词:magnetic sensor;;AlGaN/GaN heterojunction;;two-dimensional electron gas;;high temperature stability
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:大连理工大学光电工程与仪器科学学院;大连理工大学物理学院;新加坡国立大学电气与计算机工程系;
  • 出版日期:2019-08-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:51607022);; 中央高校基本科研业务费专项资金(批准号:DUT17LK13)资助的课题~~
  • 语种:中文;
  • 页:WLXB201915035
  • 页数:10
  • CN:15
  • ISSN:11-1958/O4
  • 分类号:346-355
摘要
目前市场主流的窄禁带材料霍尔磁场传感器主要工作在室温或低温环境,而新型的宽禁带GaN材料霍尔传感器虽然适用于高温,但器件结构主要是水平型,受制于异质结界面过高的纵向电场约束,能探测平行器件表面磁场的垂直型结构至今未见报道,因此技术上无法实现单一芯片三维磁场探测.针对该难题,本文提出基于宽禁带AlGaN/GaN异质结材料,采用选区浅刻蚀二维电子气沟道势垒层形成局部凹槽结构的方案,从而实现垂直型结构霍尔传感器,并且可有效地提高磁场探测灵敏度.首先对照真实器件测试数据对所提器件材料参数和物理模型进行校准,然后利用计算机辅助设计技术(TCAD)对器件电极间距比值、台面宽度、感测电极长度等核心结构参数进行优化,同时对器件特性进行深入分析讨论.仿真结果表明所设计的霍尔传感器具有高的磁场探测敏感度(器件宽度为2μm时为113.7 V/(A·T))和低的温度漂移系数(约600 ppm/K),器件能稳定工作在大于500 K的高温环境.本文工作针对宽禁带材料垂直型霍尔传感器进行设计研究,为下一步实现在单一芯片同时制造垂直型和水平型器件,从而最终获得更高集成度和探测敏感度、能高温应用的三维磁场探测技术奠定了理论基础.
        Magnetic fields are generally sensed by a device that makes use of the Hall effect. Hall-effect sensors are widely used for proximity switching, positioning, speed detecting for the purpose of control and condition monitoring. Currently, the Hall sensor products are mainly based on the narrow-bandgap Si or GaAs semiconductor, and they are suitable for room temperature or low temperature environment, while the novel wide-bandgap GaN-based Hall sensors are more suitable for the application in various high-temperature environments. However, the spatial structure of the GaN-based sensor is mainly horizontal and hence it is only able to detect the magnetic field perpendicular to it. To detect the parallel field on the sensor surface, the vertical structure device is required despite encountering many difficulties in technology, for example reducing the vertical electric field in the two-dimensional electron gas(2-DEG) channel. The vertical Hall sensor has not been reported so far, so it is technically impossible to realize three-dimensional magnetic field detection on single chip. To address the mentioned issues, in this paper we propose a design of the vertical Hall sensor based on the wide-bandgap AlGaN/GaN heterojunction material, which adopts a shallow etching of 2-DEG channel barrier to form a locally trenched structure. The material parameters and physical models of the proposed device are first calibrated against real device test data, and then the key structural parameters such as device electrode spacing ratio, mesa width and sensing electrode length are optimized by using technology computer aided design, and the device characteristics are analyzed. Finally, the simulation results confirm that the proposed Hall sensor has a higher sensitivity of magnetic field detection and lower temperature drift coefficient( ~600 ppm/K), and the device can work stably in a high-temperature(greater than 500 K) environment.Therefore, the vertical and horizontal devices can be fabricated simultaneously on the same wafer in the future,thus achieving a three-dimensional magnetic field detection in various high-temperature environments.
引文
[1]Boero G,Demierre M,Besse P A,Popovic R S 2003 Sens.Actuator A:Phys.106 314
    [2]Nama T,Gogoi A K,Tripathy P 2017 2017 IEEEInternational Symposium on Robotics and Intelligent Sensors(IRIS)Ottawa,Canada,October 5-7,2017 p208
    [3]Roumenin C,Dimitrov K,Ivanov A 2001 Sens.Actuator A:Phys.92 119
    [4]Dimitrov K 2007 Measurement 40 816
    [5]Huang L,Zhang Z Y,Peng L M 2017 Acta Phys.Sin.66218501(in Chinese)[黄乐,张志勇,彭练矛2017物理学报66218501]
    [6]Bilotti A,Monreal G,Vig R 1997 IEEE J.Solid-State Circuit.32 829
    [7]Behet M,Bekaert J,de Boeck J,Borghs G 2000 Sens.Actuator A:Phys.81 13
    [8]Kunets V P,Easwaran S,Black W T,Guzun D,Mazur Y I,Goel N,Mishima T D,Santos M B,Salamo G J 2009 IEEETrans.Electron Dev.56 683
    [9]Koide S,Takahashi H,Abderrahmane A,Shibasaki I,Sandhu A 2012 J.Phys.:Conf.Ser.352 012009
    [10]Hassan A,Ali M,Savaria Y,Sawan M 2019 Microelectron.J.84 129
    [11]Li L,Chen J,Gu X,Li X,Pu T,Ao J-P 2018 Superlattice Microst.123 274
    [12]Alim M A,Rezazadeh A A,Gaquiere C,Crupi G 2019Semicond.Sci.Technol.34 035002
    [13]Dowling K M,Alpert H S,Yalamarthy A S,Satterthwaite PF,Kumar S,K?ck H,Ausserlechner U,Senesky D G 2019 IEEE Sens.Lett.3 2500904
    [14]Tang W X,Hao R H,Chen F,Yu G H,Zhang B S 2018 Acta Phys.Sin.67 198501(in Chinese)[唐文昕,郝荣晖,陈扶,于国浩,张宝顺2018物理学报67 198501]
    [15]Ambacher O,Foutz B,Smart J,Shealy J R,Weimann N G,Chu K,Murphy M,Sierakowski A J,Schaff W J,Eastman LF,Dimitrov R,Mitchell A,Stutzmann M 2000 J.Appl.Phys.87 334
    [16]Ambacher O,Smart J,Shealy J R,Weimann N G,Chu K,Murphy M,Schaff W J,Eastman L F,Dimitrov R,Wittmer L,Stutzmann M,Rieger W,Hilsenbeck J 1999 J.Appl.Phys.85 3222
    [17]Abderrahmane A,Koide S,Sato S I,Ohshima T,Sandhu A,Okada H 2012 IEEE Trans.Magn.48 4421
    [18]Nifa I,Leroux C,Torres A,Charles M,Blachier D,Reimbold G,Ghibaudo G,Bano E 2017 Microelectron.Eng.178 128
    [19]White T P,Shetty S,Ware M E,Mantooth H A,Salamo G J2018 IEEE Sens.J.18 2944
    [20]Abderrahmane A,Tashiro T,Takahashi H,Ko P J,Okada H,Sato S,Ohshima T,Sandhu A 2014 Appl.Phys.Lett.104023508
    [21]Heidari H,Bonizzoni E,Gatti U,Maloberti F,Dahiya R 2016IEEE Sens.J.16 8736
    [22]Kaufmann T,Vecchi M C,Ruther P,Paul O 2012 Sensor.Actuat.A:Phys.178 1
    [23]Huang Y,Xu Y,Guo Y 2015 J.Semicond.36 124006(in Chinese)[黄杨,徐跃,郭宇锋2015半导体学报36 124006]
    [24]Popovic R S 1984 IEEE Electron Dev.Lett.5 357
    [25]Pascal J,Hebrard L,Kammerer J B,Frick V,Blonde J P 2007 IEEE Sensors 2007 Conference Atlanta,GA,USA,October 28-31,2007 p1480
    [26]Popovic R S 2003 Hall Effect Devices(Vol.2)(London:Institute of Physics Publishing)pp179-242
    [27]Allegretto W,Nathan A,Baltes H 1991 IEEE Trans.Comput.:Aided Des.Integr.Circuits Syst.10 501
    [28]Riccobene C,Gartner K,Wachutka G,Baltes H,Fichtner W1994 IEEE International Electron Devices Meeting San Francisco,CA,USA,December 11-14,1994 p727
    [29]Riccobene C,Wachutka G,Burgler J,Baltes H 1994 IEEETrans.Electron Dev.41 32
    [30]Farahmand M,Garetto C,Bellotti E,Brennan K F,Goano M,Ghillino E,Ghione G,Albrecht J D,Ruden P P 2001IEEE Trans.Electron Dev.48 535
    [31]Anderson T J,Tadjer M J,Mastro M A,Hite J K,Hobart KD,Eddy C R,Kub F J 2010 J.Electron.Mater.39 478
    [32]Consejo C,Contreras S,Konczewicz L,Lorenzini P,Cordier Y,Skierbiszewski C,Robert J L 2005 Phys.Stat.Sol.(c)21438
    [33]Roumenin C S,Nikolov D,Ivanov A 2004 Sensor.Actuat.A:Phys.115 303
    [34]Zhao X,Bai Y,Deng Q,Ai C,Yang X,Wen D 2017 IEEESens.J.17 5849
    [35]Kejik P,Schurig E,Bergsma F,Popovic R S 2005 The 13th International Conference on Solid-State Sensors Seoul,Korea,June 5-9,2005 p317
    [36]Yamamura T,Nakamura D,Higashiwaki M,Matsui T,Sandhu A 2006 J.Appl.Phys.99 08B302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700