用户名: 密码: 验证码:
污染水体生态治理工程中凤眼莲对水质变化的生长响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth Responses of Eichhornia crassipes to Changes of Water Quality in Ecological Treatment Engineering
  • 作者:徐寸发 ; 闻学政 ; 宋伟 ; 张迎颖 ; 刘海琴 ; 王岩 ; 秦红杰 ; 张志勇
  • 英文作者:XU Cunfa;WEN Xuezheng;SONG Wei;ZHANG Yingying;LIU Haiqin;WANG Yan;QIN Hongjie;ZHANG Zhiyong;Institute of Agricultural Resource and Environment, Jiangsu Academy of Agricultural Sciences;Central Laboratory, Jiangsu Academy of Agricultural Sciences;
  • 关键词:凤眼莲 ; 污水厂尾水 ; 总氮 ; 总磷 ; 生长响应 ; 生态修复工程
  • 英文关键词:Eichhornia crassipes;;tail water of sewage plant;;TN;;TP;;growth response;;ecological restoration engineering
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:江苏省农业科学院农业资源与环境研究所;江苏省农业科学院中心实验室;
  • 出版日期:2018-09-18
  • 出版单位:生态环境学报
  • 年:2018
  • 期:v.27
  • 基金:江苏省农业科技自主创新资金项目(CX(16)1003-3);; 江苏省重点研发专项(BE2016338)
  • 语种:中文;
  • 页:TRYJ201809021
  • 页数:9
  • CN:09
  • ISSN:44-1661/X
  • 分类号:161-169
摘要
在三级串联凤眼莲(Eichhornia crassipes)净化塘深度处理生活污水处理厂尾水的生态工程中,通过监测各级净化塘内凤眼莲的生物量、株高、根长、植株氮磷含量等指标变化,分析各指标与水体总氮(TN)和总磷(TP)质量浓度的相关性,探讨凤眼莲对水质变化的生长响应,以期为表观判断水质改善效果和明确凤眼莲在污染水体生态修复工程的适宜规模配置提供理论依据。结果表明:净化塘水体氮磷浓度显著影响凤眼莲生长,且与植株相关生长指标具有显著相关性(P<0.05);一级、二级和三级净化塘内水体TN和TP质量浓度依次降低,凤眼莲生物量及茎叶生物量、生长速率、株高、叶片SPAD值、凤眼莲茎叶和根系的氮磷含量均逐级减小,而根系生物量、根冠比和根长均逐级增加;凤眼莲茎叶生物量及其所含氮磷量均高于根系,故茎叶富集水体氮磷能力强于根系;当水体TN平均质量浓度分别为7.94、4.03和2.79 mg·L~(-1),TP平均质量浓度分别为0.22、0.15和0.12 mg·L~(-1)时,凤眼莲单位面积平均生物量分别为23.09、16.73和12.87 kg·m~(-2),累积富集氮量分别为27.44、17.59和11.04 g·m~(-2),磷量分别为2.57、1.53和0.93 g·m~(-2)。综合分析,凤眼莲生物量及其分布格局、株高、根长等生长特征表现出的差异显示了其在不同水质条件下的响应策略,水体中较高的氮磷浓度更有利于促进凤眼莲生长发育及增强其富集氮磷能力。在该研究的条件下生活污水尾水的深度净化工程,仍可承载更高的尾水处理量和污染负荷量,同时通过减少生态工程的规模配置也可确保出水水质。
        Aims to assess the improving effect of water quality and to provide a theoretical guidance on suitable population scale of Eichhornia crassipes, the macrophytes were selected as the test plants and fenced growth in a triple tandem purification pond in ecological engineering. Parameters of plants such as biomass, stalk and root length, N and P content were measured. The correlations among these parameters with TN and TP in water column were analyzed systematically. Results suggested that growth of E. crassipes were significantly affected by TN and TP in water(P<0.05), and there were significant correlations between nutrient concentration and plant growth indexes. TN and TP in water column reduced from primary to secondary and to tertiary purification pond in sequence. The biomass, growth rate, plant height, SPAD of leaves, N and P content in roots and stalks decreased with the reducing of TN and TP in waters, however, other parameters including root biomass, the ratio of root/shoot and root length showed an increasing trend. The enrichment ability of stalks in N and P was resulted from the higher N and P contents in stalks than roots. The average concentrations of TN and TP were 7.94 mg·L~(-1) and 0.22 mg·L~(-1), 4.03 mg·L~(-1) and 0.15 mg·L~(-1), 2.79 mg·L~(-1) and 0.12 mg·L~(-1), and the average biomass of E. crassipes were 23.09 kg·m~(-2), 16.73 kg·m~(-2) and 12.87 kg·m~(-2), and the amount of N and P enriched by E. crassipes were 27.44 g·m~(-2) and 2.57 g·m~(-2), 17.59 g·m~(-2) and 1.53 g·m~(-2), 11.04 g·m~(-2) and 0.93 g·m~(-2), respectively. In summary, responses were shown in biomass, plant distribution, plant height and root length when water quality ot some changes. The growth and enrichment ability in N and P of E. crassipes were benefit to the high N and P in water column. There are much larger potential in tail-water treatment and pollution load of the ecological engineering which was described in this study. The water quality also could be improved to an expected level by a smaller-scale ecological engineering.
引文
CLARKE E,BALDWIN A H.2002.Responses of wetland plant to ammonia and water level[J].Ecological Engineering,18(3):257-264.
    DHOTE S,DIXIT S.2009.Water quality improvement through macrophytes-a review[J].Environment Monitoring Assessment,152:149-453.
    DUARTE C M.1990.Seagrass nutrient content[J].Marine Ecology Progress Series,67:201-207.
    EMBAYE K,WEIH M,LEDIN S,et al.2005.Biomass and nutrient distribution in a highland bamboo forest in southwest Ethiopia implications for management[J].Forest Ecology and Management,204:159-169.
    JAYAWEERA M,KASTURIARACHCHI J.2004.Removal of nitrogen and phosphorus from industrial wastewaters by phytoremediation using water hyacinth(Eichhornia crassipes(Mart.)Solms)[J].Water Science Technology,50(6):217-225.
    LEICHT S A,SILANDER J A.2006.Differential responses of invasive Celastrus orbiculatus(Celastraceae)and native C.scandens to changes in light quality[J].American Journal of Botany,93:972-977.
    MIAO S L,NEWMAN S,SKLAR F H.2000.Effects of habitat nutrients and seed sources on growth and expansion of Typha domingensis[J].Aquatic Botany,68(4):297-311.
    MOORE M,ROMANO S P,COOK T.2010.Synthesis of upper Mississippi river system submersed and emergent aquatic vegetation:past,present and future[J].Hydrobiologia,640(1):103-114.
    NESTERENKO M A,KIRZHNER F,ZIMMELS Y,et al.2012.Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria[J].Chemosphere,87(10):1186-1191.
    POORTER H,NIKLAS K J,REICH P B,et al.2012.Biomass allocation to leaves,stems and roots:meta-analyses of interspecific variation and environmental control[J].New Phytologist,193(1):30-50.
    WANG Z,ZHANG Z Y,ZHANG Y Y,et al.2013.Nitrogen removal from lake caohai,a typical ultra-eutrophic lake in China with large scale confined growth of Eichhornia crassipe[J].Chemosphere,92(2):177-183.
    WANG Z,ZHANG Z,ZHANG J,et al.2012.Large-scale utilization of water hyacinth for nutrient removal in Lake Dianchi in China:The effects on the water quality,macrozoobenthos and zooplankton[J].Chemosphere,89(10):1255-1261.
    XIE Y H,YU D.2003.The significance of lateral roots in phosphorus(P)acquisition of water hyacinth(Eichhornia crassipes)[J].Aquatic Botany,75(4):311-321.
    ZHANG Z,WANG Z,ZHANG Z,et al.2016.Effects of engineered application of Eichhornia crassipes on the benthic macroinvertebrate diversity in lake Dianchi,an ultra-eutrophic lake in China[J].Environmental Science&Pollution Research,23(9):8388-8397.
    鲍士旦.2000.土壤农化分析[M].北京:中国农业出版社.
    蔡树美,张震,辛静,等.2011.光温条件和pH对浮萍生长及磷吸收的影响[J].环境科学与技术,34(6):63-75.
    陈兴.2011.凤眼莲适应不同生长条件的生理生化特性研究[D].福州:福建农林大学.
    窦鸿身,濮培民,张圣照,等.1995.太湖开阔水域凤眼莲的放养实验[J].植物资源与环境,4(1):54-60.
    耿浩林,王玉辉,王风玉,等.2008.恢复状态下羊草草原植被根冠比动态及影响因子[J].生态学报,28(10):4629-4634.
    顾燕飞,王俊,王洁,等.2017.不同水深条件下沉水植物苦草(Vallisneria natans)的形态响应和生长策略[J].湖泊科学,29(3):654-661.
    黄成成,张瑞海,付卫东,等.2018.空心莲子草在不同生境中氮素迁移和表型可塑性差异[J].生态环境学报,27(4):663-670.
    李建娜,胡日利,吴晓芙,等.2007.人工湿地污水处理系统中的植物氮磷吸收富集能力研究[J].环境污染与防治,29(7):506-509.
    李卫国,王建波.2007.光照和氮素对外来植物凤眼莲生长和生理特性的影响[J].武汉大学学报,53(4):457-462.
    林瑞余,陈天生,王兵,等.2007.入侵植物凤眼莲对不同酸度条件的适应性[J].福建农林大学学报(自然科学版),36(5):526-531.
    刘旻慧,秦红杰,张志勇,等.2017.不同污染浓度下浮水植物对水体营养盐的去除及生理响应[J].中国环境科学,37(11):4304-4311.
    罗固源,郑剑锋,许晓毅,等.2009.4种浮床栽培植物生长特性及吸收氮磷能力的比较[J].环境科学学报,29(2):25-290.
    王子臣,朱普平,盛婧,等.2011.凤眼莲的生物学特征[J].江苏农业学报,27(3):531-536.
    夏倩,刘凌,王流通,等.2012.连续流动分析仪在水质分析中的应用[J].分析仪器,(2):64-68.
    杨鹏鸣,周修任.2010.不同施肥水平对南瓜根冠比和壮苗指标的影响[J].西南农业学报,23(1):115-118.
    张迎颖,严少华,李小铭,等.2013.不同pH下凤眼莲与紫根凤眼莲生长特性与净化效能对比研究[J].环境工程学报,7(11):4317-4325.
    张迎颖,张志勇,王亚雷,等.2011.滇池不同水域凤眼莲生长特性及氮磷富集能力[J].生态与农村环境学报,27(6):73-77.
    张志勇,王建国,杨林章,等.2008.植物吸收对模拟污水净化系统去除氮、磷贡献的研究[J].土壤,40(3):412-419.
    张志勇,郑建初,刘海琴,等.2010.凤眼莲对不同程度富营养化水体氮磷的去除贡献[J].中国生态农业学报,18(1):152-157.
    赵月琴,卢剑波,朱磊,等.2006.不同营养水平对外来物种凤眼莲生长特征及其竞争力的影响[J].生物多样性,14(2):159-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700